dystroglycan

营养不良聚糖
  • 文章类型: Journal Article
    蛋白质O-连接的甘露糖(O-Man)糖基化是一种进化保守的翻译后修饰(PTM),其在胚胎发育过程中发挥重要的生物学作用。三个非冗余酶家族,POMT1/POMT2,TMTC1-4和TMEM260选择性地协调蛋白质O-Man糖基化在不同类型的跨膜蛋白上的起始,包括α-营养不良聚糖,钙黏着蛋白和丛蛋白受体。然而,缺乏对其底物特异性的系统研究,部分是由于O-Man糖基转移酶在细胞中的普遍表达,这排除了在蛋白质组范围内对途径特异性O-Man糖基化的分析。这里,我们在五种人类细胞系中应用了膜糖蛋白质组学的靶向工作流程,以广泛定位O-Man底物,并通过O-Man糖基转移酶基因的个体和组合敲除(KO)基因解构O-Man起始。我们建立了人类细胞文库,用于通过定量糖蛋白质组学分析单个O-Man起始途径的底物特异性。我们的结果鉴定了180个O-Man糖蛋白,证明了POMT1/POMT2途径的新蛋白质靶标,并表明TMTC1-4和TMEM260途径广泛靶向参与细胞-细胞和细胞-细胞外基质相互作用的质膜蛋白的不同Ig样蛋白质结构域。在Ig样折叠上鉴定O-Man增加了对结构域特异性O-Man糖基化的新兴概念的进一步了解,这为O-Man糖基化粘附分子和受体的功能研究打开了大门。
    Protein O-linked mannose (O-Man) glycosylation is an evolutionary conserved post-translational modification (PTM) that fulfills important biological roles during embryonic development. Three non-redundant enzyme families, POMT1/POMT2, TMTC1-4 and TMEM260, selectively coordinate the initiation of protein O-Man glycosylation on distinct classes of transmembrane proteins, including α-dystroglycan, cadherins and plexin receptors. However, a systematic investigation of their substrate specificities is lacking, in part due to the ubiquitous expression of O-Man glycosyltransferases in cells, which precludes analysis of pathway-specific O-Man glycosylation on a proteome-wide scale. Here, we apply a targeted workflow for membrane glycoproteomics across five human cell lines to extensively map O-Man substrates and genetically deconstruct O-Man initiation by individual and combinatorial knock-out (KO) of O-Man glycosyltransferase genes. We established a human cell library for analysis of substrate specificities of individual O-Man initiation pathways by quantitative glycoproteomics. Our results identify 180 O-Man glycoproteins, demonstrate new protein targets for the POMT1/POMT2 pathway and show that TMTC1-4 and TMEM260 pathways widely target distinct Ig-like protein domains of plasma membrane proteins involved in cell-cell and cell-extracellular matrix interactions. The identification of O-Man on Ig-like folds adds further knowledge on the emerging concept of domain-specific O-Man glycosylation which opens for functional studies of O-Man glycosylated adhesion molecules and receptors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    聚合层粘连蛋白是多结构域基底膜(BM)糖蛋白,其自组装成细胞锚定的平面晶格以建立初始BM支架。Nidogens,然后,胶原蛋白IV和蛋白聚糖在不同的结构域基因座处与支架结合以产生成熟的BM。相邻层粘连蛋白的LN结构域彼此结合形成聚合物节点,而LG结构域连接到细胞骨架锚定整合素和营养不良聚糖,以及硫酸盐和硫酸乙酰肝素。聚合物节点,聚合物支架的重复单元,被组织成一个近乎对称的triskelion.结构,最近通过冷冻电子显微镜结合AlphaFold2建模和生化研究解决,揭示了LN表面残基如何相互作用,以及突变如何导致一组新兴疾病中的自组装失败,LN-层粘连蛋白病,包括LAMA2相关的营养不良和Pierson综合征。
    Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cre-lox系统是神经科学研究中将基因缺失靶向特定细胞群体的不可或缺的工具。在这里,我们评估了几种转基因Cre系的实用性,随着病毒的方法,用于靶向小鼠小脑浦肯野细胞。使用荧光报道系(Ai14)的组合来指示Cre介导的重组和floxedDystroglycan系(Dag1flox),我们表明,报道分子表达并不总是与蛋白质丢失精确对齐。常用的Pcp2Cre系在P7-P14的Purkinje细胞中表现出Cre重组的逐渐镶嵌模式,而Dag1蛋白的丢失直到P30才完全。Ptf1aCre驱动前体细胞的重组,从而在胚胎小脑中产生GABA能神经元,包括浦肯野细胞和分子层中间神经元。然而,由于它在前体中的瞬时表达,Ptf1aCre导致这些神经元中Dag1蛋白的随机丢失。NestinCre,通常被描述为中枢神经系统的“泛神经元”Cre线,在浦肯野细胞中不驱动Cre介导的重组。我们确定了Calb1Cre系,它可以在胚胎Purkinje细胞中驱动有效和完全的重组,导致Dag1蛋白在突触发生之前丢失。在P0时AAV8介导的Cre递送导致在出生后第二周期间Purkinje细胞的逐渐转导,Dag1蛋白的损失直到P35才达到可感知的水平。这些结果表征了在不同发育阶段靶向小脑浦肯野细胞中条件性缺失的几种工具,并说明了验证重组后蛋白质丢失的重要性。重要性陈述用于将基因缺失靶向定义的细胞群体的Cre系的发展导致了神经科学中的重要发现。和任何工具一样,有固有的局限性,必须仔细考虑。在这里,我们描述了几种Cre系,可用于在各个发育阶段靶向小脑Purkinje细胞。我们使用Cre依赖性荧光报道系和突触支架分子Dystroglycan的条件性缺失的组合作为示例,以突出显示荧光报道分子的存在与蛋白质丢失之间的潜在脱节。
    The Cre-lox system is an indispensable tool in neuroscience research for targeting gene deletions to specific cellular populations. Here we assess the utility of several transgenic Cre lines, along with a viral approach, for targeting cerebellar Purkinje cells (PCs) in mice. Using a combination of a fluorescent reporter line (Ai14) to indicate Cre-mediated recombination and a floxed Dystroglycan line (Dag1flox ), we show that reporter expression does not always align precisely with loss of protein. The commonly used Pcp2Cre line exhibits a gradual mosaic pattern of Cre recombination in PCs from Postnatal Day 7 (P7) to P14, while loss of Dag1 protein is not complete until P30. Ptf1aCre drives recombination in precursor cells that give rise to GABAergic neurons in the embryonic cerebellum, including PCs and molecular layer interneurons. However, due to its transient expression in precursors, Ptf1aCre results in stochastic loss of Dag1 protein in these neurons. NestinCre , which is often described as a \"pan-neuronal\" Cre line for the central nervous system, does not drive Cre-mediated recombination in PCs. We identify a Calb1Cre line that drives efficient and complete recombination in embryonic PCs, resulting in loss of Dag1 protein before the period of synaptogenesis. AAV8-mediated delivery of Cre at P0 results in gradual transduction of PCs during the second postnatal week, with loss of Dag1 protein not reaching appreciable levels until P35. These results characterize several tools for targeting conditional deletions in cerebellar PCs at different developmental stages and illustrate the importance of validating the loss of protein following recombination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    维持心脏膜和膜细胞器的结构对于心脏功能至关重要。关键的心脏膜细胞器是横管系统(称为t管系统),它是表面膜的内陷。心肌t管系统的独特结构特征是细胞外基质(ECM)从表面膜延伸到t管腔中。然而,ECM延伸到心脏t管腔的重要性尚不清楚。Dystroglycan(DG)是许多细胞表面膜中的ECM受体,它也在心肌的t小管中表达。DG结合ECM蛋白需要广泛的翻译后加工和O-糖基化,并且该结合由称为基质聚糖的聚糖结构介导。导致DG的O-糖基化缺陷的遗传破坏导致具有心肺病理生理学的肌营养不良。这里,我们表明DG对于维持心脏t管结构完整性至关重要。DG的O-糖基化缺陷的小鼠发育出正常的t-小管,但容易受到应激诱导的t-小管损失或切断的影响,从而导致心脏功能障碍和疾病进展。最后,我们在一组仅缺乏基质聚糖的小鼠中观察到类似的应激诱导的心脏t管破坏.总的来说,我们的数据表明,t-小管中的DG通过多糖基质聚糖将管腔ECM锚定到t-小管膜,这对于将ECM的结构强度传输到t管至关重要,并提供抗机械应力,最终防止心脏T管完整性的破坏。
    Maintaining the structure of cardiac membranes and membrane organelles is essential for heart function. A critical cardiac membrane organelle is the transverse tubule system (called the t-tubule system) which is an invagination of the surface membrane. A unique structural characteristic of the cardiac muscle t-tubule system is the extension of the extracellular matrix (ECM) from the surface membrane into the t-tubule lumen. However, the importance of the ECM extending into the cardiac t-tubule lumen is not well understood. Dystroglycan (DG) is an ECM receptor in the surface membrane of many cells, and it is also expressed in t-tubules in cardiac muscle. Extensive posttranslational processing and O-glycosylation are required for DG to bind ECM proteins and the binding is mediated by a glycan structure known as matriglycan. Genetic disruption resulting in defective O-glycosylation of DG results in muscular dystrophy with cardiorespiratory pathophysiology. Here, we show that DG is essential for maintaining cardiac t-tubule structural integrity. Mice with defects in O-glycosylation of DG developed normal t-tubules but were susceptible to stress-induced t-tubule loss or severing that contributed to cardiac dysfunction and disease progression. Finally, we observed similar stress-induced cardiac t-tubule disruption in a cohort of mice that solely lacked matriglycan. Collectively, our data indicate that DG in t-tubules anchors the luminal ECM to the t-tubule membrane via the polysaccharide matriglycan, which is critical to transmitting structural strength of the ECM to the t-tubules and provides resistance to mechanical stress, ultimately preventing disruptions in cardiac t-tubule integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    营养不良聚糖(DG)是由DAG1基因编码的α-和β-DG亚基组成的细胞外基质受体。纯合突变(c.2006G>T,β-DG中的p.Cys669Phe)引起人类多囊性脑白质营养不良的肌-眼-脑疾病。在这种原发性营养不良病的小鼠模型中,大约三分之二的纯合胚胎未能发育到足月。出生的突变小鼠经历正常的出生后发育,但表现出迟发性肌病,具有部分渗透性的组织病理学变化和活动轮上的表现受损。他们的大脑和眼睛结构正常,但是突变型β-DG的定位在神经胶质血管末足中被改变,导致血脑和血视网膜屏障的蛋白质组成受到干扰。此外,突变小鼠的肌肉和大脑中的α-和β-DG蛋白水平显着降低。由于C669F-β-DG小鼠的部分渗透发育表型,它们代表了一种新颖且非常有价值的小鼠模型,用于研究胚胎发生过程中和成熟肌肉中β-DG功能改变的分子效应,大脑和眼睛,并深入了解原发性营养不良病的发病机理。
    Dystroglycan (DG) is an extracellular matrix receptor consisting of an α- and a β-DG subunit encoded by the DAG1 gene. The homozygous mutation (c.2006G>T, p.Cys669Phe) in β-DG causes muscle-eye-brain disease with multicystic leukodystrophy in humans. In a mouse model of this primary dystroglycanopathy, approximately two-thirds of homozygous embryos fail to develop to term. Mutant mice that are born undergo a normal postnatal development but show a late-onset myopathy with partially penetrant histopathological changes and an impaired performance on an activity wheel. Their brains and eyes are structurally normal, but the localization of mutant β-DG is altered in the glial perivascular end-feet, resulting in a perturbed protein composition of the blood-brain and blood-retina barrier. In addition, α- and β-DG protein levels are significantly reduced in muscle and brain of mutant mice. Owing to the partially penetrant developmental phenotype of the C669F β-DG mice, they represent a novel and highly valuable mouse model with which to study the molecular effects of β-DG functional alterations both during embryogenesis and in mature muscle, brain and eye, and to gain insight into the pathogenesis of primary dystroglycanopathies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fmolb.2023.1325284。].
    [This corrects the article DOI: 10.3389/fmolb.2023.1325284.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dystroglycan是一种广泛表达的异二聚体细胞表面层粘连蛋白受体,在细胞粘附中起作用,信令,和膜稳定。最近,已显示,肌营养不良聚糖的跨膜β亚基定位于核膜和核质。这导致了这样的假设,即营养不良聚糖可能在核膜上具有类似于其在质膜上的作用的结构作用。成肌细胞的生化部分清楚地支持在细胞核中存在营养不良聚糖。通过使用CRISPR/Cas9破坏DAG1基因座来缺失营养不良蛋白聚糖蛋白会导致细胞核大小的变化,但不会导致整体形态的变化;此外,营养不良聚糖缺失细胞核的杨氏模量,由原子力显微镜测定,是不变的。营养不良聚糖破坏的成肌细胞也不再容易受到核应激,包括化学和机械应激,比正常成肌细胞.在DAG1破坏的成肌细胞中,肌营养不良蛋白聚糖的再表达可恢复核大小,而不影响其他核参数。
    Dystroglycan is a ubiquitously expressed heterodimeric cell-surface laminin receptor with roles in cell adhesion, signalling, and membrane stabilisation. More recently, the transmembrane β-subunit of dystroglycan has been shown to localise to both the nuclear envelope and the nucleoplasm. This has led to the hypothesis that dystroglycan may have a structural role at the nuclear envelope analogous to its role at the plasma membrane. The biochemical fraction of myoblast cells clearly supports the presence of dystroglycan in the nucleus. Deletion of the dystroglycan protein by disruption of the DAG1 locus using CRISPR/Cas9 leads to changes in nuclear size but not overall morphology; moreover, the Young\'s modulus of dystroglycan-deleted nuclei, as determined by atomic force microscopy, is unaltered. Dystroglycan-disrupted myoblasts are also no more susceptible to nuclear stresses including chemical and mechanical, than normal myoblasts. Re-expression of dystroglycan in DAG1-disrupted myoblasts restores nuclear size without affecting other nuclear parameters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    营养不良聚糖(DG)是在组织中广泛表达的细胞粘附复合物。它由两个子单元组成,α-DG,一种高度糖基化的蛋白质,与几种细胞外基质蛋白相互作用,和跨膜β-DG,细胞结构域与肌动蛋白细胞骨架结合。α-DG的糖基化对于作为其多个细胞外结合配偶体的受体起作用是至关重要的。α-DG糖基化的扰动是严重病理如肌营养不良和癌症的发病机理中的中心事件。β-DG充当几种细胞骨架和核蛋白的支架,对这些细胞内相互作用中的一些的精细调节以及它们在疾病中如何受到干扰知之甚少。为了通过识别优先与β-DG相关的未表征的细胞内网络来开始填补这一空白,用携带β-DG亚基的质粒瞬时转染HEK-293细胞,其中GFP在其C-末端融合。有了这个策略,我们的目标是迫使β-DG占据多个细胞内位置,而不是紧紧地坐在其典型的质膜环境,通常与α-DG相关。通过抗GFP抗体的免疫沉淀,然后进行shot弹枪蛋白质组分析,从而鉴定了由313个与β-DG结合的专有蛋白质匹配形成的相互作用组。已经发现了一系列已知的β-DG相互作用物,包括ezrin和emerin,虽然重要的新比赛,其中包括潜在的新型β-DG相互作用者及其相关网络,在不同的亚细胞区室中被鉴定出来,如细胞骨架,内质网/高尔基,线粒体,核膜和细胞核本身。特别感兴趣的是新颖的识别匹配,层相关多肽-1B(LAP1B),一种内核膜蛋白,已知其突变会导致以肌营养不良为特征的核包膜病,在HEK-293细胞中发现与β-DG相互作用。免疫沉淀证实了这一证据,蛋白质印迹和免疫荧光实验。我们还通过免疫荧光实验发现,LAP1B在C2C12DG敲除细胞中失去其核包膜定位,这表明LAP1B需要β-DG才能进行适当的核定位。这些结果扩展了β-DG作为核支架蛋白的作用,并提供了新的证据,证明了肌营养不良症与核包膜病之间可能存在联系。
    Dystroglycan (DG) is a cell adhesion complex that is widely expressed in tissues. It is composed by two subunits, α-DG, a highly glycosylated protein that interacts with several extracellular matrix proteins, and transmembrane β-DG whose, cytodomain binds to the actin cytoskeleton. Glycosylation of α-DG is crucial for functioning as a receptor for its multiple extracellular binding partners. Perturbation of α-DG glycosylation is the central event in the pathogenesis of severe pathologies such as muscular dystrophy and cancer. β-DG acts as a scaffold for several cytoskeletal and nuclear proteins and very little is known about the fine regulation of some of these intracellular interactions and how they are perturbed in diseases. To start filling this gap by identifying uncharacterized intracellular networks preferentially associated with β-DG, HEK-293 cells were transiently transfected with a plasmid carrying the β-DG subunit with GFP fused at its C-terminus. With this strategy, we aimed at forcing β-DG to occupy multiple intracellular locations instead of sitting tightly at its canonical plasma membrane milieu, where it is commonly found in association with α-DG. Immunoprecipitation by anti-GFP antibodies followed by shotgun proteomic analysis led to the identification of an interactome formed by 313 exclusive protein matches for β-DG binding. A series of already known β-DG interactors have been found, including ezrin and emerin, whilst significant new matches, which include potential novel β-DG interactors and their related networks, were identified in diverse subcellular compartments, such as cytoskeleton, endoplasmic reticulum/Golgi, mitochondria, nuclear membrane and the nucleus itself. Of particular interest amongst the novel identified matches, Lamina-Associated Polypeptide-1B (LAP1B), an inner nuclear membrane protein, whose mutations are known to cause nuclear envelopathies characterized by muscular dystrophy, was found to interact with β-DG in HEK-293 cells. This evidence was confirmed by immunoprecipitation, Western blotting and immunofluorescence experiments. We also found by immunofluorescence experiments that LAP1B looses its nuclear envelope localization in C2C12 DG-knock-out cells, suggesting that LAP1B requires β-DG for a proper nuclear localization. These results expand the role of β-DG as a nuclear scaffolding protein and provide novel evidence of a possible link between dystroglycanopathies and nuclear envelopathies displaying with muscular dystrophy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Dystroglycan(Dag1)是一种跨膜糖蛋白,可将细胞外基质与肌动蛋白细胞骨架连接。Dag1或其糖基化所需的基因的突变会导致营养不良,一种先天性肌营养不良,其特征是广泛的表型,包括肌肉无力,大脑缺陷,和认知障碍。我们研究了中间神经元(IN)的发育,突触功能,以及多种小鼠模型中相关的癫痫发作易感性,这些模型反映了广泛的表型范围。由于Dag1或Pomt2的前脑缺失(这是Dystroglycan糖基化所必需的),显示CCK+/CB1R+IN发展显著受损。CCK+/CB1R+IN轴突未能正确靶向海马锥体神经元的体树突区室,导致突触缺陷和癫痫发作易感性增加。缺乏Dystroglycan胞内结构域的小鼠在CCK+/CB1R+轴突靶向方面有较温和的缺陷,但却表现出抑制性突触功能的戏剧性变化,表明该结构域的关键突触后作用。相比之下,CCK+/CB1R+IN突触功能和癫痫发作易感性在模型小鼠中由于部分减少的肌聚糖糖基化而导致轻度肌营养不良病正常。总的来说,这些数据表明,抑制性突触缺陷和癫痫发作易感性升高是严重营养不良病的标志,并表明Dystroglycan在组织功能性抑制性突触组装中起着重要作用。
    Dystroglycan (Dag1) is a transmembrane glycoprotein that links the extracellular matrix to the actin cytoskeleton. Mutations in Dag1 or the genes required for its glycosylation result in dystroglycanopathy, a type of congenital muscular dystrophy characterized by a wide range of phenotypes including muscle weakness, brain defects, and cognitive impairment. We investigated interneuron (IN) development, synaptic function, and associated seizure susceptibility in multiple mouse models that reflect the wide phenotypic range of dystroglycanopathy neuropathology. Mice that model severe dystroglycanopathy due to forebrain deletion of Dag1 or Pomt2, which is required for Dystroglycan glycosylation, show significant impairment of CCK+/CB1R+ IN development. CCK+/CB1R+ IN axons failed to properly target the somatodendritic compartment of pyramidal neurons in the hippocampus, resulting in synaptic defects and increased seizure susceptibility. Mice lacking the intracellular domain of Dystroglycan have milder defects in CCK+/CB1R+ IN axon targeting, but exhibit dramatic changes in inhibitory synaptic function, indicating a critical postsynaptic role of this domain. In contrast, CCK+/CB1R+ IN synaptic function and seizure susceptibility was normal in mice that model mild dystroglycanopathy due to partially reduced Dystroglycan glycosylation. Collectively, these data show that inhibitory synaptic defects and elevated seizure susceptibility are hallmarks of severe dystroglycanopathy, and show that Dystroglycan plays an important role in organizing functional inhibitory synapse assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Dystroglycan(DG)是一种在多种细胞和组织中广泛表达的跨膜蛋白。它由两个子单元组成,α-和β-DG,代表细胞外部和内部之间的分子桥,这对于质膜的机械和结构稳定性至关重要。α亚基是一种细胞表面蛋白,与细胞外基质(ECM)结合,并通过与β亚基的非共价相互作用与质膜紧密结合。which,反过来,是与细胞骨架肌动蛋白结合的跨膜蛋白。DG是一种多功能分子,不仅用作机械结构单元,而且还用作内外信号事件的调节剂。β-DG的细胞质结构域与不同的衔接子和细胞骨架蛋白相互作用,这些蛋白充当分子开关,用于在细胞内传递ECM信号。这些相互作用可以调节DG参与不同的生物过程,从细胞生长和存活到分化和增殖/再生。尽管表征通过ECM-DG-细胞骨架轴信号传导的分子事件在很大程度上仍然未知,近年来,越来越多的证据开始填补我们对DG在信号转导中的作用的理解空白。这个小型评论代表了最近的事态发展,揭示DG作为粘附和信号分子的双重作用,可能会激发设计新的治疗策略的新思路,心肌病,和癌症,其中DG信令集线器起着重要作用。
    Dystroglycan (DG) is a transmembrane protein widely expressed in multiple cells and tissues. It is formed by two subunits, α- and β-DG, and represents a molecular bridge between the outside and the inside of the cell, which is essential for the mechanical and structural stability of the plasma membrane. The α-subunit is a cell-surface protein that binds to the extracellular matrix (ECM) and is tightly associated with the plasma membrane via a non-covalent interaction with the β-subunit, which, in turn, is a transmembrane protein that binds to the cytoskeletal actin. DG is a versatile molecule acting not only as a mechanical building block but also as a modulator of outside-inside signaling events. The cytoplasmic domain of β-DG interacts with different adaptor and cytoskeletal proteins that function as molecular switches for the transmission of ECM signals inside the cells. These interactions can modulate the involvement of DG in different biological processes, ranging from cell growth and survival to differentiation and proliferation/regeneration. Although the molecular events that characterize signaling through the ECM-DG-cytoskeleton axis are still largely unknown, in recent years, a growing list of evidence has started to fill the gaps in our understanding of the role of DG in signal transduction. This mini-review represents an update of recent developments, uncovering the dual role of DG as an adhesion and signaling molecule that might inspire new ideas for the design of novel therapeutic strategies for pathologies such as muscular dystrophy, cardiomyopathy, and cancer, where the DG signaling hub plays important roles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号