direct reprogramming

直接重编程
  • 文章类型: Journal Article
    直接重编程为产生功能性内皮细胞(ECs)提供了新的突破,而无需中间干细胞或祖细胞状态。为心血管研究和治疗提供有前途的资源。ETV2是一种关键的转录因子,已被确定为指定内皮谱系的先驱因子。实现精确的ETV2诱导对于有效的内皮重编程至关重要,而维持重编程的细胞表型依赖于生长因子和小分子的特定组合。因此,我们在此提供了一个简单而全面的方案,用于从人真皮成纤维细胞(HDFs)产生两种不同类型的重编程ECs(rECs).早期的rECs表现出强大的新生血管形成特性,但缺乏成熟的EC表型,而晚期rECs表现出与人类出生后ECs的表型相似性,并且具有与早期rECs相似的新血管形成能力。两种细胞类型都可以来自人类体细胞,使它们适合个性化的疾病调查,药物发现,和疾病治疗。
    Direct reprogramming provides a novel breakthrough for generating functional endothelial cells (ECs) without the need for intermediate stem or progenitor states, offering a promising resource for cardiovascular research and treatment. ETV2 is a key transcription factor that has been identified as a pioneering factor for specifying endothelial lineage. Achieving precise ETV2 induction is essential for effective endothelial reprogramming, and maintaining the reprogrammed cellular phenotype relies on a specific combination of growth factors and small molecules. Thus, we hereby provide a straightforward and comprehensive protocol for generating two distinct types of reprogrammed ECs (rECs) from human dermal fibroblasts (HDFs). Early rECs demonstrate a robust neovascularization property but lack the mature EC phenotype, while late rECs exhibit phenotypical similarity to human postnatal ECs and have a neovascularization capacity similar to early rECs. Both cell types can be derived from human somatic source cells, making them suitable for personalized disease investigations, drug discovery, and disease therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    多形性胶质母细胞瘤(GBM)是一种侵袭性脑肿瘤,死亡率高。直接将神经胶质细胞重编程为不同的细胞谱系,如诱导神经干细胞(iNSC)和诱导神经元(iNeurons),提供遗传工具来操纵细胞的命运,作为神经疾病的潜在疗法。NeuroD1(ND1)是神经发生的主要转录因子,它促进神经元分化。在本研究中,我们检验了GBM细胞中ND1的表达可以迫使它们向有丝分裂后神经元分化并阻止GBM肿瘤进展的假设。在培养的人GBM细胞系中,包括LN229,U87和U373作为替莫唑胺(TMZ)敏感细胞和T98G作为TMZ抗性细胞,神经元谱系转化由携带ND1的腺相关病毒(AAV)包诱导。AAV-ND1转导后21天,表达ND1的细胞展示神经元标志物MAP2、TUJ1和NeuN。ND1诱导的转分化受Wnt信号调节,在低氧条件下显着增强(2%O2vs.21%O2)。与载体对照培养物相比,表达ND1的GBM培养物具有更少的BrdU阳性增殖细胞。通过TUNEL染色观察到细胞死亡增加,在TMZ敏感性和抗性GBM细胞中ND1重编程后,伤口愈合试验证明了迁移活性降低。与癌细胞形成鲜明对比的是,转化细胞表达抗肿瘤基因p53。在正畸GBM小鼠模型中,将AAV-ND1重编程的U373细胞移植到环孢菌素免疫受损的C57BL/6小鼠脑的穹窿中。与对照GBM细胞形成的肿瘤相比,来自ND1重编程培养物的细胞形成较小的肿瘤,并在大脑中表达神经元标志物,如TUJ1。因此,使用单因素ND1重编程克服了耐药性,在体外和体内将异质GBM细胞的恶性细胞转化为正常的神经元样细胞。这些新颖的观察结果需要使用患者来源的GBM细胞和患者来源的异种移植(PDX)模型作为致命脑癌和其他星形细胞瘤肿瘤的潜在有效治疗方法进行进一步的研究。
    Glioblastoma Multiforme (GBM) is an aggressive brain tumor with a high mortality rate. Direct reprogramming of glial cells to different cell lineages, such as induced neural stem cells (iNSCs) and induced neurons (iNeurons), provides genetic tools to manipulate a cell\'s fate as a potential therapy for neurological diseases. NeuroD1 (ND1) is a master transcriptional factor for neurogenesis and it promotes neuronal differentiation. In the present study, we tested the hypothesis that the expression of ND1 in GBM cells can force them to differentiate toward post-mitotic neurons and halt GBM tumor progression. In cultured human GBM cell lines, including LN229, U87, and U373 as temozolomide (TMZ)-sensitive and T98G as TMZ-resistant cells, the neuronal lineage conversion was induced by an adeno-associated virus (AAV) package carrying ND1. Twenty-one days after AAV-ND1 transduction, ND1-expressing cells displayed neuronal markers MAP2, TUJ1, and NeuN. The ND1-induced transdifferentiation was regulated by Wnt signaling and markedly enhanced under a hypoxic condition (2% O2 vs. 21% O2). ND1-expressing GBM cultures had fewer BrdU-positive proliferating cells compared to vector control cultures. Increased cell death was visualized by TUNEL staining, and reduced migrative activity was demonstrated in the wound-healing test after ND1 reprogramming in both TMZ-sensitive and -resistant GBM cells. In a striking contrast to cancer cells, converted cells expressed the anti-tumor gene p53. In an orthotopical GBM mouse model, AAV-ND1-reprogrammed U373 cells were transplanted into the fornix of the cyclosporine-immunocompromised C57BL/6 mouse brain. Compared to control GBM cell-formed tumors, cells from ND1-reprogrammed cultures formed smaller tumors and expressed neuronal markers such as TUJ1 in the brain. Thus, reprogramming using a single-factor ND1 overcame drug resistance, converting malignant cells of heterogeneous GBM cells to normal neuron-like cells in vitro and in vivo. These novel observations warrant further research using patient-derived GBM cells and patient-derived xenograft (PDX) models as a potentially effective treatment for a deadly brain cancer and likely other astrocytoma tumors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    原发性线粒体疾病是由核DNA(nDNA)或线粒体DNA(mtDNA)基因突变引起的,编码对线粒体结构或功能至关重要的蛋白质。鉴于针对线粒体疾病的疾病特异性疗法很少,逆转线粒体功能障碍的新疗法是必要的。在这项工作中,我们探索了使用GFM1基因突变患者的成纤维细胞和诱导神经元治疗线粒体疾病的新选择.该基因编码参与线粒体蛋白质合成的必需线粒体翻译延伸因子G1。由于严重的线粒体缺陷,突变GFM1成纤维细胞不能在半乳糖培养基中存活,使它们成为测试药理化合物有效性的理想筛选模型。我们发现虎杖苷和烟酰胺的组合能够使突变GFM1成纤维细胞在应激介质中存活。我们还证明了虎杖苷和烟酰胺上调线粒体未折叠蛋白反应(mtUPR),尤其是SIRT3途径。mtUPR激活部分恢复线粒体蛋白合成和表达,以及改进的细胞生物能学。此外,我们证实了该治疗在通过直接重编程从患者成纤维细胞获得的GFM1突变诱导的神经元中的积极作用.总的来说,我们提供了令人信服的证据,证明mtUPR激活是GFM1突变的有前景的治疗策略.
    Primary mitochondrial diseases result from mutations in nuclear DNA (nDNA) or mitochondrial DNA (mtDNA) genes, encoding proteins crucial for mitochondrial structure or function. Given that few disease-specific therapies are available for mitochondrial diseases, novel treatments to reverse mitochondrial dysfunction are necessary. In this work, we explored new therapeutic options in mitochondrial diseases using fibroblasts and induced neurons derived from patients with mutations in the GFM1 gene. This gene encodes the essential mitochondrial translation elongation factor G1 involved in mitochondrial protein synthesis. Due to the severe mitochondrial defect, mutant GFM1 fibroblasts cannot survive in galactose medium, making them an ideal screening model to test the effectiveness of pharmacological compounds. We found that the combination of polydatin and nicotinamide enabled the survival of mutant GFM1 fibroblasts in stress medium. We also demonstrated that polydatin and nicotinamide upregulated the mitochondrial Unfolded Protein Response (mtUPR), especially the SIRT3 pathway. Activation of mtUPR partially restored mitochondrial protein synthesis and expression, as well as improved cellular bioenergetics. Furthermore, we confirmed the positive effect of the treatment in GFM1 mutant induced neurons obtained by direct reprogramming from patient fibroblasts. Overall, we provide compelling evidence that mtUPR activation is a promising therapeutic strategy for GFM1 mutations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尽管从一种细胞类型到另一种细胞类型的谱系重编程正在成为基于细胞的治疗的突破性技术,一些限制仍有待克服,包括低转换效率和亚型特异性。为了解决这些问题,许多研究都是用遗传学进行的,化学,物理学,和细胞生物学来控制转录网络,信令级联,和重编程过程中的表观遗传修饰。这里,我们总结了细胞重编程的最新进展,并讨论了未来的方向。
    Although lineage reprogramming from one cell type to another is becoming a breakthrough technology for cell-based therapy, several limitations remain to be overcome, including the low conversion efficiency and subtype specificity. To address these, many studies have been conducted using genetics, chemistry, physics, and cell biology to control transcriptional networks, signaling cascades, and epigenetic modifications during reprogramming. Here, we summarize recent advances in cellular reprogramming and discuss future directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    COVID-19大流行引起了人们对信使RNA(mRNA)的医学应用的兴趣。预计将应用mRNA,不仅仅是疫苗,还有再生医学。mRNA的纯度对于其医学应用是重要的。然而,目前的mRNA合成技术存在问题,包括不希望的5'-未加帽的mRNA和双链RNA的污染。最近,我们小组开发了一种完全加帽的mRNA合成技术,这有助于mRNA研究的进展。引入化学修饰的核苷,如N1-甲基假尿苷和5-甲基胞苷,Karikó和Weissman报道,为mRNA在疫苗和再生医学中的实际应用开辟了道路。Yamanaka报道了通过使用逆转录病毒载体引入四种类型的基因来产生诱导多能干细胞(iPSC)。iPSCs广泛用于再生医学研究和疾病模型的制备以筛选新的候选药物。在山中因素中,Klf4和c-Myc是癌基因,如果将它们整合到基因组DNA中,则存在肿瘤发展的风险。因此,使用mRNA的再生医学,没有基因组插入的风险,引起了注意。在这次审查中,作者总结了mRNA合成技术及其在再生医学中的应用。
    The COVID-19 pandemic generated interest in the medicinal applications of messenger RNA (mRNA). It is expected that mRNA will be applied, not only to vaccines, but also to regenerative medicine. The purity of mRNA is important for its medicinal applications. However, the current mRNA synthesis techniques exhibit problems, including the contamination of undesired 5\'-uncapped mRNA and double-stranded RNA. Recently, our group developed a completely capped mRNA synthesis technology that contributes to the progress of mRNA research. The introduction of chemically modified nucleosides, such as N1-methylpseudouridine and 5-methylcytidine, has been reported by Karikó and Weissman, opening a path for the practical application of mRNA for vaccines and regenerative medicine. Yamanaka reported the production of induced pluripotent stem cells (iPSCs) by introducing four types of genes using a retrovirus vector. iPSCs are widely used for research on regenerative medicine and the preparation of disease models to screen new drug candidates. Among the Yamanaka factors, Klf4 and c-Myc are oncogenes, and there is a risk of tumor development if these are integrated into genomic DNA. Therefore, regenerative medicine using mRNA, which poses no risk of genome insertion, has attracted attention. In this review, the author summarizes techniques for synthesizing mRNA and its application in regenerative medicine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fncel.2023.1225504。].
    [This corrects the article DOI: 10.3389/fncel.2023.1225504.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在衰老的人体中,组织修复会受到严重损害,从而导致严重的疾病状况(例如心肌梗塞或阿尔茨海默病),并给全球健康带来巨大负担。重编程方法(部分或直接重编程)被认为在解决这种未满足的医疗需求方面是富有成效的。然而,功效,细胞成熟度和特异性靶向仍然是直接重编程的主要挑战。在这里,我们描述了解决这些挑战的直接重编程新方法。细胞外信号通路(受体酪氨酸激酶,RTK和受体丝氨酸/Theronine激酶,RSTK)和表观遗传标记在重新连接细胞程序以确定细胞命运方面仍然至关重要。我们建议现代蛋白质设计技术(AI设计的微型粘合剂调节RTK/RSTK,表观遗传学酶,或先驱因素)有潜力解决上述挑战。有效的转分化/直接重编程可能在未来提供共同减少衰老的分子策略。纤维化,和退行性疾病。
    Tissue repair is significantly compromised in the aging human body resulting in critical disease conditions (such as myocardial infarction or Alzheimer\'s disease) and imposing a tremendous burden on global health. Reprogramming approaches (partial or direct reprogramming) are considered fruitful in addressing this unmet medical need. However, the efficacy, cellular maturity and specific targeting are still major challenges of direct reprogramming. Here we describe novel approaches in direct reprogramming that address these challenges. Extracellular signaling pathways (Receptor tyrosine kinases, RTK and Receptor Serine/Theronine Kinase, RSTK) and epigenetic marks remain central in rewiring the cellular program to determine the cell fate. We propose that modern protein design technologies (AI-designed minibinders regulating RTKs/RSTK, epigenetic enzymes, or pioneer factors) have potential to solve the aforementioned challenges. An efficient transdifferentiation/direct reprogramming may in the future provide molecular strategies to collectively reduce aging, fibrosis, and degenerative diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中枢神经系统有限的再生能力通常会导致损伤后永久性神经元丢失。将常驻反应性星形胶质细胞重新编程为损伤部位的诱导神经元是一种有前途的神经修复策略。但是在稳定和准确靶向转基因表达的病毒载体方面仍然存在挑战。在这项研究中,我们采用生物启发的自组装肽(SAP)水凝胶的精确和控制释放的杂合腺相关病毒(AAV)载体,AAVDJ,携带NeuroD1神经重编程转基因。这种方法有效地减轻了在靶位点的高病毒剂量的问题,脱靶交付,和免疫原性反应,提高载体的定位和重编程效率。体外,这个载体成功地诱导了神经元的形成,如形态学所证实,组织化学,和电生理分析。在体内,SAP介导的AAVDJ-NeuroD1递送促进反应性宿主星形胶质细胞转分化为诱导神经元,同时减少胶质瘢痕。我们的研究结果介绍了一种安全有效的治疗中枢神经系统损伤的方法,标志着再生神经科学的重大进步。
    The central nervous system\'s limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector\'s targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过将HD患者的真皮成纤维细胞直接重编程为纹状体神经元,开发了一种新的亨廷顿氏病(HD)体外模型。在直接重编程的情况下,避免重编程为诱导多能干细胞(iPS)细胞。从而产生保留特定供体细胞固有表观遗传信息的神经元,因此,与年龄相关的疾病表型。在新模型中再现了HD的主要组织病理学特征;即,突变亨廷顿蛋白聚集在源自患者成纤维细胞的纹状体神经元中。通过直接重编程获得的培养神经元的实验可以单独评估神经病理学的进展,并实施个性化方法来选择治疗策略和治疗药物。HD的体外模型可用于临床前药物研究。
    A new in vitro model of Huntington\'s disease (HD) was developed via a direct reprogramming of dermal fibroblasts from HD patients into striatal neurons. A reprogramming into induced pluripotent stem (iPS) cells is obviated in the case of direct reprogramming, which thus yields neurons that preserve the epigenetic information inherent in cells of a particular donor and, consequently, the age-associated disease phenotype. A main histopathological feature of HD was reproduced in the new model; i.e., aggregates of mutant huntingtin accumulated in striatal neurons derived from a patient\'s fibroblasts. Experiments with cultured neurons obtained via direct reprogramming make it possible to individually assess the progression of neuropathology and to implement a personalized approach to choosing the treatment strategy and drugs for therapy. The in vitro model of HD can be used in preclinical drug studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Rett综合征(RTT)是一种严重的神经发育障碍,每10,000名女性中就有1名。它是由X连锁MECP2基因突变引起的,它编码全局转录调节因子MeCP2。由于RTT患者的人脑样本很少,不能用于下游研究,迫切需要病理性神经元变化的体外建模。这里,我们采用直接重编程方法,使用编码转录因子SOX2和PAX6的两个附加型质粒,从MeCP2缺陷型和野生型人真皮成纤维细胞产生神经元细胞.我们证明获得的神经元表现出典型的神经元形态并表达适当的标记蛋白。RNA测序证实了所获得的MeCP2缺陷型和野生型神经元的神经元同一性。此外,这些MeCP2缺陷的神经元反映了体外RTT的病理生理学,具有减少的树枝化和组蛋白H3和H4的过度乙酰化。用MeCP2处理,与细胞穿透肽TAT相连,改善MeCP2缺陷神经元中H4K16的高乙酰化,这加强了该细胞模型的RTT相关性。我们基于患者成纤维细胞的直接重编程产生了一个神经元模型,提供了一个强大的工具来研究疾病机制和研究新的RTT治疗方案。
    Rett Syndrome (RTT) is a severe neurodevelopmental disorder, afflicting 1 in 10,000 female births. It is caused by mutations in the X-linked methyl-CpG-binding protein gene (MECP2), which encodes for the global transcriptional regulator methyl CpG binding protein 2 (MeCP2). As human brain samples of RTT patients are scarce and cannot be used for downstream studies, there is a pressing need for in vitro modeling of pathological neuronal changes. In this study, we use a direct reprogramming method for the generation of neuronal cells from MeCP2-deficient and wild-type human dermal fibroblasts using two episomal plasmids encoding the transcription factors SOX2 and PAX6. We demonstrated that the obtained neurons exhibit a typical neuronal morphology and express the appropriate marker proteins. RNA-sequencing confirmed neuronal identity of the obtained MeCP2-deficient and wild-type neurons. Furthermore, these MeCP2-deficient neurons reflect the pathophysiology of RTT in vitro, with diminished dendritic arborization and hyperacetylation of histone H3 and H4. Treatment with MeCP2, tethered to the cell penetrating peptide TAT, ameliorated hyperacetylation of H4K16 in MeCP2-deficient neurons, which strengthens the RTT relevance of this cell model. We generated a neuronal model based on direct reprogramming derived from patient fibroblasts, providing a powerful tool to study disease mechanisms and investigating novel treatment options for RTT.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号