differentiation medium

  • 文章类型: Journal Article
    人类诱导多能干细胞(hiPSC)来源的肠道类器官是研究发育生物学和个性化治疗的有价值的工具,但是它们的封闭拓扑和相对不成熟的状态限制了应用。这里,我们使用芯片上器官技术在更生理的体外微环境中开发出具有顶端和基底外侧通路的hiPSC衍生肠屏障。为了沿着隐窝-绒毛轴复制生长因子梯度,我们将细胞局部暴露于扩增和分化培养基中。在这些条件下,肠上皮细胞自组织成具有生理屏障完整性的绒毛样褶皱,肌成纤维细胞和神经元在底部通道中出现并形成上皮下组织。生长因子梯度有效地平衡分裂和成熟细胞类型,并诱导肠上皮成分,包括吸收和分泌谱系,类似于人类小肠的成分。这种特征良好的hiPSC衍生的芯片肠系统可以促进对人类小肠中的生理过程和治疗开发的个性化研究。
    Human induced pluripotent stem cell (hiPSC)-derived intestinal organoids are valuable tools for researching developmental biology and personalized therapies, but their closed topology and relative immature state limit applications. Here, we use organ-on-chip technology to develop a hiPSC-derived intestinal barrier with apical and basolateral access in a more physiological in vitro microenvironment. To replicate growth factor gradients along the crypt-villus axis, we locally expose the cells to expansion and differentiation media. In these conditions, intestinal epithelial cells self-organize into villus-like folds with physiological barrier integrity, and myofibroblasts and neurons emerge and form a subepithelial tissue in the bottom channel. The growth factor gradients efficiently balance dividing and mature cell types and induce an intestinal epithelial composition, including absorptive and secretory lineages, resembling the composition of the human small intestine. This well-characterized hiPSC-derived intestine-on-chip system can facilitate personalized studies on physiological processes and therapy development in the human small intestine.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    培养肉是一种通过细胞培养而不是动物饲养来制造肉的新兴技术。在大多数现有的文化体系下,体外产生的肌管的含量和成熟度不足,限制养殖肉的应用和公众接受。在这里,我们证明了一种天然化合物,柚皮苷(NAR),促进了猪卫星细胞(PSC)体外成肌分化,增加了生成肌管的含量和成熟度,特别是对于经历了广泛扩增的PSC。机械上,NAR通过激活雌激素受体β在PSC的肌生成过程中上调IGF-1/AKT/mTOR合成代谢途径。此外,将PSC与水凝胶混合并在具有平行微通道的模具中培养以制造培养的猪肉样品。检测到更成熟的肌球蛋白,当分化培养基补充NAR时,观察到明显的肌节。一起来看,这些发现表明,NAR通过上调IGF-1信号诱导PSC的分化和成熟肌管的生成,促进高效和创新的养殖肉类生产系统的发展。
    Cultured meat is an emerging technology for manufacturing meat through cell culture rather than animal rearing. Under most existing culture systems, the content and maturity of in vitro generated myotubes are insufficient, limiting the application and public acceptance of cultured meat. Here we demonstrated that a natural compound, naringenin (NAR), promoted myogenic differentiation of porcine satellite cells (PSCs) in vitro and increased the content and maturity of generated myotubes, especially for PSCs that had undergone extensive expansion. Mechanistically, NAR upregulated the IGF-1/AKT/mTOR anabolic pathway during the myogenesis of PSCs by activating the estrogen receptor β. Moreover, PSCs were mixed with hydrogels and cultured in a mold with parallel micro-channels to manufacture cultured pork samples. More mature myosin was detected, and obvious sarcomere was observed when the differentiation medium was supplemented with NAR. Taken together, these findings suggested that NAR induced the differentiation of PSCs and generation of mature myotubes through upregulation of the IGF-1 signaling, contributing to the development of efficient and innovative cultured meat production systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Comparative Study
    Human pluripotent stem cells (hPSCs) have the potential to differentiate along the retinal lineage. However, most induction systems are dependent on multiple small molecular compounds such as Dkk-1, Lefty-A, and retinoic acid. In the present study, we efficiently differentiated hPSCs into retinal cells using a retinal differentiation medium (RDM) without the use of small molecular compounds. This novel differentiation system recapitulates retinal morphogenesis in humans, i.e. hPSCs gradually differentiate into optic vesicle-shaped spheres, followed by optic cup-shaped spheres and, lastly, retinal progenitor cells. Furthermore, at different stages, hPSC-derived retinal cells mirror the transcription factor expression profiles seen in their counterparts during human embryogenesis. Most importantly, hinge epithelium was found between the hPSC-derived neural retina (NR) and retinal pigment epithelium (RPE). These data suggest that our culture system provides a new method for generating hPSC-derived retinal cells that, for the first time, might be used in human transplantation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    甲基钴胺(MeCbl)是一种维生素B12类似物,对周围神经疾病有一些积极作用。尽管以前的一些研究揭示了MeCbl对神经元的影响,它对肌肉的影响,这是运动神经元轴突的最终目标,还有待阐明。本研究旨在确定MeCbl对肌肉的作用。我们发现MeCbl在体外促进C2C12成肌细胞的增殖和迁移,并且这些作用由Erk1/2信号通路介导,而不影响Akt信号通路的活性。我们还证明了MeCbl在分化期间抑制C2C12细胞凋亡。我们的结果表明MeCbl在体外对肌肉具有有益作用。MeCbl给药可以为去神经支配后的肌肉损伤或退化肌肉提供新的治疗方法。
    Methylcobalamin (MeCbl) is a vitamin B12 analog that has some positive effects on peripheral nervous disorders. Although some previous studies revealed the effects of MeCbl on neurons, its effect on the muscle, which is the final target of motoneuron axons, remains to be elucidated. This study aimed to determine the effect of MeCbl on the muscle. We found that MeCbl promoted the proliferation and migration of C2C12 myoblasts in vitro and that these effects are mediated by the Erk1/2 signaling pathway without affecting the activity of the Akt signaling pathway. We also demonstrated that MeCbl inhibits C2C12 cell apoptosis during differentiation. Our results suggest that MeCbl has beneficial effects on the muscle in vitro. MeCbl administration may provide a novel therapeutic approach for muscle injury or degenerating muscle after denervation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Modulation of the transient receptor potential melastatin type-8 (TRPM8), the receptor for menthol acting as the major sensor for peripheral innocuous cool temperatures, has several important applications in pharmaceutical, food and cosmetic industries. In the present study, we designed 12 isoxazole derivatives and tested their pharmacological properties both in F11 sensory neurons in vitro, and in an in vivo model of cold allodynia. In F11 sensory neurons, single-cell Ca(2+)-imaging experiments revealed that, when compared to menthol, some newly-synthesized compounds were up to 200-fold more potent, though none of them showed an increased efficacy. Some isoxazole derivatives potentiated allodynic responses elicited by acetone when administered to rats subjected to sciatic nerve ligation; when compared to menthol, these compounds were efficacious at earlier (0-2 min) but not later (7-9 or 14-16 min) time points. Docking experiments performed in a human TRPM8 receptor model revealed that newly-synthesized compounds might adopt two possible conformations, thereby allowing to distinguish \"menthol-like\" compounds (characterized by high efficacy/low potency), and \"icillin-like\" compounds (with high potency/low efficacy). Collectively, these data provide rationale structure-activity relationships for isoxazole derivatives acting as TRPM8 agonists, and suggest their potential usefulness for cold-evoked analgesia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Promising treatment approaches in repairing tissue defects include implementation of regenerative medicine strategies, particularly delivery of preadipocytes to sites where adipose tissue damage needs to be repaired or where fat needs to be generated. In this study, we suggest that the injectable hyaluronic acid/adipic acid dihydrazide (HA/ADH) hydrogel may be an adipose-tissue-like material in terms of biological compatibility as well as mechanical behavior. First, we show that the hydrogel enables and supports growth, proliferation and differentiation of 3T3-L1 preadipocytes. Second, given that adipose tissue is a weight-bearing biological structure, we investigate the large deformation mechanical behavior of the hydrogel with and without embedded preadipocytes, by performing confined and unconfined compression tests and then calibrating a strain energy density (SED) function to the results. Four test groups were examined: (1) Hydrogel specimens right after the preparation without cells, (2) and (3) 3-days-cultured hydrogel specimens with and without cells, respectively, and (4) 6-days-cultured hydrogel specimens with cells. A one-term Ogden SED was found to adequately describe the hyperelastic behavior of the hydrogel specimens in all experimental groups. Importantly, we found that the mechanical properties of the hydrogel, when subjected to compression, are in good agreement with those of native adipose tissue, with the better fit occurring 3-6 days after preparation of the hydrogel. Third, computational finite element studies of the mechanical (stress-strain) behavior of the HA/ADH hydrogel when containing mature adipocytes indicated that the stiffnesses of the constructs were mildly affected by the presence of the adipocytes. Hence, we conclude that injectable HA/ADH hydrogel may serve as a vessel for protecting preadipocytes during, and at a short-term after delivery to native tissues, e.g. in research towards regenerative medicine in tissue reconstructions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号