dielectric screening

介质筛选
  • 文章类型: Journal Article
    俄歇复合是半导体纳米晶体(NC)的关键过程,显着影响光电器件中电荷载流子的产生和收集。这一过程主要取决于NC的电子结构。在我们的研究中,我们使用瞬态吸收(TA)光谱结合理论和实验结构表征研究了锰(Mn2)掺杂的CsPbI3NC中的俄歇复合动力学。我们的结果表明,Mn2+掺杂加速俄歇复合,随着Mn掺杂浓度增加到10%,双激子寿命从146ps降低到74ps。在Mn掺杂的NC中加速的俄歇复合归因于激子的带边缘波函数重叠增加以及由于Mn轨道参与而导致的俄歇复合最终态的更大密度。此外,Mn掺杂减少了激子的介电屏蔽,这也有助于加速俄歇重组。我们的研究证明了元素掺杂通过改变材料的电子结构来调节俄歇复合率的潜力。
    Auger recombination is a pivotal process for semiconductor nanocrystals (NCs), significantly affecting charge carrier generation and collection in optoelectronic devices. This process depends mainly on the NCs\' electronic structures. In our study, we investigated Auger recombination dynamics in manganese (Mn2+)-doped CsPbI3 NCs using transient absorption (TA) spectroscopy combined with theoretical and experimental structural characterization. Our results show that Mn2+ doping accelerates Auger recombination, reducing the biexciton lifetime from 146 to 74 ps with increasing Mn doping concentration up to 10%. This accelerated Auger recombination in Mn-doped NCs is attributed to increased band edge wave function overlap of excitons and a larger density of final states of Auger recombination due to Mn orbital involvement. Moreover, Mn doping reduces the dielectric screening of the excitons, which also contributes to the accelerated Auger recombination. Our study demonstrates the potential of element doping to regulate Auger recombination rates by modifying the materials\' electronic structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    介电筛选在确定纳米级的物理性质中起着至关重要的作用,并影响我们使用光学技术检测和表征纳米材料的能力。我们研究了介电屏蔽如何改变碳纳米管内部封装的纳米结构中的电磁场和多体效应。首先,我们表明,与空气悬浮内管相比,金属外壁使内管的散射强度降低了2个数量级,符合我们当地的现场计算。第二,我们发现,当外管是金属时,内壁中光学跃迁能的介电位移大于半导电时。位移的大小表明,如果外管也是金属的,则小直径内金属管中的激子在室温下会热解离,从本质上讲,我们观察到薄金属双壁纳米管的带间跃迁。
    Dielectric screening plays a vital role in determining physical properties at the nanoscale and affects our ability to detect and characterize nanomaterials using optical techniques. We study how dielectric screening changes electromagnetic fields and many-body effects in nanostructures encapsulated inside carbon nanotubes. First, we show that metallic outer walls reduce the scattering intensity of the inner tube by 2 orders of magnitude compared to that of air-suspended inner tubes, in line with our local field calculations. Second, we find that the dielectric shift of the optical transition energies in the inner walls is greater when the outer tube is metallic than when it is semiconducting. The magnitude of the shift suggests that the excitons in small-diameter inner metallic tubes are thermally dissociated at room temperature if the outer tube is also metallic, and in essence, we observe band-to-band transitions in thin metallic double-walled nanotubes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    金属卤化物钙钛矿,特别是准二维钙钛矿子类,已经显示出用于照明和显示的下一代电致发光材料的相当大的潜力。然而,这些钙钛矿中缺陷的存在对器件的发射效率和耐久性有很大影响。在这项研究中,通过使用溴化钾的双功能化合物,我们揭示了钙钛矿薄膜的协同钝化机理。双功能溴化钾一方面可以用溴阴离子钝化卤化物空位的缺陷,另一方面,可以用钾阳离子筛选晶界处的带电缺陷。这种方法有效地降低了由于电荷缺陷捕获而导致的载流子猝灭的可能性,从而提高了钙钛矿薄膜的辐射复合效率。导致光致发光量子产率显着提高到接近单位值(95%)。同时,溴化钾处理促进了均匀光滑薄膜的生长,促进器件中的电荷载流子注入。因此,基于此策略的钙钛矿发光二极管可实现〜21%的最大外量子效率和〜60,000cdm-2的最大亮度。这项工作提供了更深入的了解离子化合物添加剂在钙钛矿中的溶液方法的钝化机理。
    Metal halide perovskites, particularly the quasi-two-dimensional perovskite subclass, have exhibited considerable potential for next-generation electroluminescent materials for lighting and display. Nevertheless, the presence of defects within these perovskites has a substantial influence on the emission efficiency and durability of the devices. In this study, we revealed a synergistic passivation mechanism on perovskite films by using a dual-functional compound of potassium bromide. The dual functional potassium bromide on the one hand can passivate the defects of halide vacancies with bromine anions and, on the other hand, can screen the charged defects at the grain boundaries with potassium cations. This approach effectively reduces the probability of carriers quenching resulting from charged defects capture and consequently enhances the radiative recombination efficiency of perovskite thin films, leading to a significant enhancement of photoluminescence quantum yield to near-unity values (95%). Meanwhile, the potassium bromide treatment promoted the growth of homogeneous and smooth film, facilitating the charge carrier injection in the devices. Consequently, the perovskite light-emitting diodes based on this strategy achieve a maximum external quantum efficiency of ~ 21% and maximum luminance of ~ 60,000 cd m-2. This work provides a deeper insight into the passivation mechanism of ionic compound additives in perovskite with the solution method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物正交化学为药物递送系统提供了强大的工具,因为它能够原位产生治疗剂,最小化脱靶效应。具有刺激响应特性的生物正交过渡金属催化剂(TMC)由于其空间-,temporal-,和剂量可控特性。在本文中,我们基于增强的绿色荧光蛋白(EGFP)-纳米酶(NZ)复合物(EGFP-NZ)构建了刺激响应性生物正交催化系统。通过调节溶液的离子强度直接实现EGFP-NZ络合物的催化性能的调节。盐离子引入的介电筛选允许EGFP-NZ络合物的解离,增加底物进入NZs活性位点的途径,并同时增加纳米酶的活性。NZ/EGFP=1:1复合物的催化速率变化与盐浓度从0mM到150mM呈正相关。
    Bio-orthogonal chemistry provides a powerful tool for drug delivery systems due to its ability to generate therapeutic agents in situ, minimizing off-target effects. Bio-orthogonal transition metal catalysts (TMCs) with stimuli-responsive properties offer possibilities for controllable catalysis due to their spatial-, temporal-, and dosage-controllable properties. In this paper, we fabricated a stimuli-responsive bio-orthogonal catalysis system based on an enhanced green fluorescent protein (EGFP)-nanozyme (NZ) complex (EGFP-NZ). Regulation of the catalytic properties of the EGFP-NZ complex was directly achieved by modulating the ionic strength of the solution. The dielectric screening introduced by salt ions allows the dissociation of the EGFP-NZ complex, increasing the access of substrate to the active site of the NZs and concomitantly increasing nanozyme activity. The change in catalytic rate of the NZ/EGFP = 1:1 complex was positively correlated with salt concentration from 0 mM to 150 mM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    虽然α-FAPbI3钙钛矿太阳能电池(PSC)的功率转换效率(PCE)已经取得了显著进步,获得可控的钙钛矿结晶仍然是一个相当大的障碍。这一挑战源于δ-FAPbI3的初始形成,比期望的黑色α相更能量稳定的相,在薄膜沉积过程中。这破坏了α-FAPbI3的异质成核,导致混合相和缺陷的形成。为此,我们介绍了使用分子添加剂的极性工程,特别是(甲基-磺酰基)苯基)乙胺(MSPE)。我们的发现表明,PbI2-MSPEs-FAI中间体的相互作用随着MSPEs极性的增加而增强,这反过来又加快了α-FAPbI3的成核。这导致高质量的α-FAPbI3薄膜的发展,其特点是垂直晶体取向和减少的残余应力。此外,MSPE在钙钛矿晶界的增加的偶极矩减弱了带电缺陷和筛网载流子捕获过程中的库仑吸引力,从而减少非辐射复合。利用这些机制,用高极性2-(4-MSPE)处理的PSC在小面积设备中实现了25.2%的令人印象深刻的PCE,在活性面积为70cm2的大面积钙钛矿太阳能模块(PSM)中实现了20.5%的PCE。这些结果证明了该策略在实现α-FAPbI3的可控结晶方面的有效性,为高效PSM的可扩展生产铺平了道路。本文受版权保护。保留所有权利。
    While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3, a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3, causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2-MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3. This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2. These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3, paving the way for scalable-production of high-efficiency PSMs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在原子薄的二维材料中减少的介电屏蔽使它们对周围环境非常敏感,可以调节它们的光电特性。在这项研究中,我们通过使用不同的液体电介质改变周围环境,显着提高了单层MoS2的光电性能,每个具有从1.89到18的特定介电常数。液体介质在同一设备上提供环境可调谐的可能性。对于背栅场效应晶体管,当暴露于高介电常数介质时,场效应迁移率表现出大于二阶的增强。对介电环境对光电特性的影响的进一步研究表明,光响应弛豫时间随电介质的变化而变化。观察到上升和衰减时间增加和减少,分别,随着介质介电常数的增加。这些结果可以归因于周围介质提供的电介质屏蔽,这强烈地改变了带电杂质的散射,带隙,和单层MoS2的缺陷水平。这些发现对生物和化学传感器的设计具有重要意义,特别是那些在液体环境中工作的人。通过利用电介质的可调性,我们可以优化此类传感器的性能并增强其检测能力。
    The reduced dielectric screening in atomically thin two-dimensional materials makes them very sensitive to the surrounding environment, which can be modulated to tune their optoelectronic properties. In this study, we significantly improved the optoelectronic properties of monolayer MoS2by varying the surrounding environment using different liquid dielectrics, each with a specific dielectric constant ranging from 1.89 to 18. Liquid mediums offer the possibility of environment tunability on the same device. For a back-gated field effect transistor, the field effect mobility exhibited more than two-order enhancement when exposed to a high dielectric constant medium. Further investigation into the effect of the dielectric environment on the optoelectronic properties demonstrated a variation in photoresponse relaxation time with the dielectric medium. The rise and decay times were observed to increase and decrease, respectively, with an increase in the dielectric constant of the medium. These results can be attributed to the dielectric screening provided by the surrounding medium, which strongly modifies the charged impurity scattering, the band gap, and defect levels of monolayer MoS2. These findings have important implications for the design of biological and chemical sensors, particularly those operating in a liquid environment. By leveraging the tunability of the dielectric medium, we can optimize the performance of such sensors and enhance their detection capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    卤化物双钙钛矿包括一类新兴的半导体,具有巨大的化学和电子多样性。虽然它们的能带结构特征可以从前沿轨道模型中理解,光学激发的化学直觉仍然不完整。这里,我们在GW中使用从头算的多体扰动理论和Bethe-Salpeter方程方法来计算具有代表性的Cs2BB\'Cl6双钙钛矿的激发态性质。我们的计算表明,具有B和B'阳离子不同组合的双钙钛矿显示出各种各样的电子能带结构和介电性能,并形成结合能超过几个数量级的激子。通过将这些特性与Wannier-Mott模型的规范条件进行比较,我们将这些特性与载流子有效质量的轨道诱导各向异性和介电函数的长程行为相关联。此外,我们使用计算廉价的密度泛函理论计算得出化学直观的规则来预测卤化物双钙钛矿中激子的性质。
    Halide double perovskites comprise an emerging class of semiconductors with tremendous chemical and electronic diversity. While their band structure features can be understood from frontier-orbital models, chemical intuition for optical excitations remains incomplete. Here, we use ab initio many-body perturbation theory within the GW and the Bethe-Salpeter equation approach to calculate excited-state properties of a representative range of Cs2BB\'Cl6 double perovskites. Our calculations reveal that double perovskites with different combinations of B and B\' cations display a broad variety of electronic band structures and dielectric properties and form excitons with binding energies ranging over several orders of magnitude. We correlate these properties with the orbital-induced anisotropy of charge-carrier effective masses and the long-range behavior of the dielectric function by comparing them with the canonical conditions of the Wannier-Mott model. Furthermore, we derive chemically intuitive rules for predicting the nature of excitons in halide double perovskites using computationally inexpensive density functional theory calculations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    单层过渡金属二硫属化合物(TMDC),例如WSe2由于其强烈的电子-空穴相互作用而引起了越来越多的关注,被认为是开发新的光学应用的有希望的候选人。在几层政权内,这些系统对周围环境高度敏感,使得能够使用适当的衬底来调谐这些原子薄半导体的期望方面。在这种情况下,衬底提供的介电环境对这些层状材料的电子和光学性能产生重大影响,影响电子带隙和激子结合能。然而,对TMDC发光的相应影响仍在讨论中。为了阐明这些影响,我们使用了广泛的材料作为单层WSe2的衬底,从而可以在很宽的介电常数范围内观察这些影响。我们的结果表明,介电常数的增加会引起WSe2光学带隙的系统红移,这与发光强度的显着降低本质上有关。此外,我们对样品进行退火以确保WSe2和其衬底之间的紧密耦合,减少在界面中捕获的不期望的吸附物的影响。最终,我们的发现揭示了退火温度的临界程度,表明高于某个阈值,热处理会对发光产生不利影响。此外,我们的结论强调了衬底的介电特性对WSe2发光的影响,表明低介电常数有利于保持相邻单层的天然特性。
    Single layers of transition metal dichalcogenides (TMDCs), such as WSe2have gathered increasing attention due to their intense electron-hole interactions, being considered promising candidates for developing novel optical applications. Within the few-layer regime, these systems become highly sensitive to the surrounding environment, enabling the possibility of using a proper substrate to tune desired aspects of these atomically-thin semiconductors. In this scenario, the dielectric environment provided by the substrates exerts significant influence on electronic and optical properties of these layered materials, affecting the electronic band-gap and the exciton binding energy. However, the corresponding effect on the luminescence of TMDCs is still under discussion. To elucidate these impacts, we used a broad set of materials as substrates for single-layers of WSe2, enabling the observation of these effects over a wide range of electrical permittivities. Our results demonstrate that an increasing permittivity induces a systematic red-shift of the optical band-gap of WSe2, intrinsically related to a considerable reduction of the luminescence intensity. Moreover, we annealed the samples to ensure a tight coupling between WSe2and its substrates, reducing the effect of undesired adsorbates trapped in the interface. Ultimately, our findings reveal how critical the annealing temperature can be, indicating that above a certain threshold, the heating treatment can induce adverse impacts on the luminescence. Furthermore, our conclusions highlight the influence the dielectric properties of the substrate have on the luminescence of WSe2, showing that a low electrical permittivity favours preserving the native properties of the adjacent monolayer.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景技术制造纳米级器件通常需要金属接触与二维(2D)半导体的集成。然而,2D/金属界面中的纳米级变化可以极大地改变局部光电特性。这里,我们绘制了与Au接触的2D半导体MoS2的局部激子变化。我们利用悬浮和外延生长的2D/金属平台,该平台允许相关电子能量损失光谱(EELS)和角度分辨光电子光谱(nanoARPES)映射。MoS2激子的空间定位揭示了与MoS2/Au界面相关的附加EELS峰。NanoARPES测量表明Au-S杂交随着距离2D/金属界面的距离而显著降低,表明观察到的EELS峰是由于激子库仑相互作用的介电筛选而产生的。我们的结果表明,增加范德华距离可以优化混合维2D/3D界面的激子谱,并通过局部介电环境或莫尔工程突出了激子能量库仑工程的机会。
    The integration of metallic contacts with two-dimensional (2D) semiconductors is routinely required for the fabrication of nanoscale devices. However, nanometer-scale variations in the 2D/metal interface can drastically alter the local optoelectronic properties. Here, we map local excitonic changes of the 2D semiconductor MoS2 in contact with Au. We utilize a suspended and epitaxially grown 2D/metal platform that allows correlated electron energy-loss spectroscopy (EELS) and angle resolved photoelectron spectroscopy (nanoARPES) mapping. Spatial localization of MoS2 excitons uncovers an additional EELS peak related to the MoS2/Au interface. NanoARPES measurements indicate that Au-S hybridization decreases substantially with distance from the 2D/metal interface, suggesting that the observed EELS peak arises due to dielectric screening of the excitonic Coulomb interaction. Our results suggest that increasing the van der Waals distance could optimize excitonic spectra of mixed-dimensional 2D/3D interfaces and highlight opportunities for Coulomb engineering of exciton energies by the local dielectric environment or moiré engineering.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Low-dimensional semiconductors have found numerous applications in optoelectronics. However, a quantitative comparison of the absorption strength of low-dimensional versus bulk semiconductors has remained elusive. Here, we report generality in the band-edge light absorptance of semiconductors, independent of their dimensions. First, we provide atomistic tight-binding calculations that show that the absorptance of semiconductor quantum wells equals mπα (m = 1 or 2 with α as the fine-structure constant), in agreement with reported experimental results. Then, we show experimentally that a monolayer (superlattice) of quantum dots has similar absorptance, suggesting an absorptance quantum of mπα per (confined) exciton diameter. Extending this idea to bulk semiconductors, we experimentally demonstrate that an absorptance quantum equal to mπα per exciton Bohr diameter explains their widely varying absorption coefficients. We thus provided compelling evidence that the absorptance quantum πα per exciton diameter rules the band-edge absorption of all direct semiconductors, regardless of their dimension.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号