degradable

可降解
  • 文章类型: Journal Article
    尽管化石塑料具有显著的特性,目前在生产中采用的不可持续的方法,使用和处置对能源和环境都构成了严重威胁。发展可降解生物质材料作为化石塑料的替代品,可以从源头上有效解决能源-环境悖论。这里,我们通过组装和交联纳米纤维素与针叶木浆微纤维制备了新型微纳米多尺度复合膜。复合膜结合了微纤维和纳米纤维素的优点,达到91%的最大透光率,可折叠,优异的机械性能(拉伸强度:51.3MPa,断裂伸长率:4%,杨氏模量:3.4GPa),热稳定性高,40天内完全降解。该复合膜表现出机械化学自愈合,并且即使在断裂后仍保持性能。这种卓越的性能完全符合石油塑料替代品的要求。通过将CaAlSiN3:Eu2+掺入复合膜中,它可以实现红光和蓝光的双重发射,从而能够促进植物生长并呈现作为农用薄膜的新型可持续替代品的潜力。通过组装微纤维和纳米纤维素,提出了这种新颖的策略来制造高质量的生物质材料,从而为环境友好型资源可持续新材料提供了一条有希望的途径。
    Despite the significant properties of fossil plastics, the current unsustainable methods employed in production, usage and disposal present a grave threat to both energy and environment. The development of degradable biomass materials as substitutes for fossil plastics can effectively address the energy-environment paradox at the source. Here, we prepared novel micro-nano multiscale composite films through assembling and crosslinking nanocellulose with coniferous wood pulp microfibers. The composite film combines the advantages of microfibers and nanocellulose, achieving a maximum transmittance of 91 %, foldability, excellent mechanical properties (tensile strength: 51.3 MPa, elongation at break: 4 %, young\'s modulus: 3.4 GPa), high thermal stability and complete degradation within 40 days. The composite film exhibits mechanochemical self-healing and retains properties even after fracture. Such exceptional performance fully meets the requirements for substituting petroleum plastics. By incorporating CaAlSiN3:Eu2+ into the composite film, it enables dual emission of red and blue light, thereby being able to promote plant growth and presenting potential as a novel sustainable alternative for agricultural films. By assembling microfiber and nanocellulose, such novel strategy is presented for the fabrication of high-quality biomass materials, thereby offering a promising avenue towards environment-friendly resource-sustainable new materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    还原光聚合3D打印已被证明对于高分辨率的聚合物部件的快速增材制造(AM)非常成功。然而,可以打印的材料范围及其产生的性能仍然狭窄。在这里,我们报告了一系列聚(碳酸酯-b-酯-b-碳酸酯)弹性体的成功AM,源自二氧化碳和生物衍生的ε-十内酯。用Co(II)一Mg(II)聚合催化剂,合成了ABA三嵌段共聚物(Mn=6.3kgmol-1,-M=1.26),并使用数字光处理(DLP)与硫醇-烯进行3D打印。生产了一系列弹性和可降解的热固性塑料,随着交联剂长度和聚乙二醇含量的变化,以高分辨率产生复杂的三重周期性几何形状。热机械表征揭示了印刷诱导的微相分离和可调的亲水性。这些发现强调了如何利用DLP可以快速和高分辨率地从低摩尔质量多元醇生产可持续材料。这些功能材料的3D打印将加快可持续塑料和弹性体的生产,这些塑料和弹性体有可能取代传统的石化产品。
    Vat photopolymerization 3D printing has proven very successful for the rapid additive manufacturing (AM) of polymeric parts at high resolution. However, the range of materials that can be printed and their resulting properties remains narrow. Herein, we report the successful AM of a series of poly(carbonate-b-ester-b-carbonate) elastomers, derived from carbon dioxide and bio-derived ϵ-decalactone. By employing a highly active and selective Co(II)Mg(II) polymerization catalyst, an ABA triblock copolymer (Mn=6.3 kg mol-1, ÐM=1.26) was synthesized, formulated into resins which were 3D printed using digital light processing (DLP) and a thiol-ene-based crosslinking system. A series of elastomeric and degradable thermosets were produced, with varying thiol cross-linker length and poly(ethylene glycol) content, to produce complex triply periodic geometries at high resolution. Thermomechanical characterization of the materials reveals printing-induced microphase separation and tunable hydrophilicity. These findings highlight how utilizing DLP can produce sustainable materials from low molar mass polyols quickly and at high resolution. The 3D printing of these functional materials may help to expedite the production of sustainable plastics and elastomers with potential to replace conventional petrochemical-based options.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    压电纳米发电机(PENG)正在蓬勃发展,用于能量收集和可穿戴能源供应,作为下一代绿色能量收集设备之一。平衡输出,安全,降解,成本是解决PENG应用瓶颈的关键。在这方面,合成了掺钇(Y)的氧化锌(ZnO)(Y-ZnO),并将其嵌入到聚丙交酯(PLLA)中,以开发具有增强能量收集性能的可降解压电复合膜。合成的Y-ZnO表现出高的压电性能,受益于Y-O键的更强极性和氧空位浓度的调节,提高了Y-ZnO和PLLA(Y-Z-PLLA)复合薄膜的输出性能。获得的开路电压(Voc),短路电流(Isc),优化的Y-Z-PLLAPENG的瞬时功率密度达到17.52V,2.45μA,和1.76μW/cm2。所提出的PENG也显示出良好的降解性。此外,通过转换生物力学能量,证明了所提出的PENG的实际应用,比如走路,跑步,跳跃,电。
    Piezoelectric nanogenerators (PENGs) are booming for energy collection and wearable energy supply as one of the next generations of green energy-harvesting devices. Balancing the output, safety, degradation, and cost is the key to solving the bottleneck of PENG application. In this regard, yttrium (Y)-doped zinc oxide (ZnO) (Y-ZnO) was synthesized and embedded into polylactide (PLLA) for developing degradable piezoelectric composite films with an enhanced energy-harvesting performance. The synthesized Y-ZnO exhibits high piezoelectric properties benefiting from the stronger polarity of the Y-O bond and regulation of oxygen vacancy concentration, which improve the output performance of the composite film with Y-ZnO and PLLA (Y-Z-PLLA). The obtained open-circuit voltage (Voc), short-circuit current (Isc), and instantaneous power density of the optimized Y-Z-PLLA PENG reach 17.52 V, 2.45 μA, and 1.76 μW/cm2, respectively. The proposed PENG also shows good degradability. In addition, practical applications of the proposed PENG were demonstrated by converting biomechanical energy, such as walking, running, and jumping, into electricity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在过去的十年中,两性离子聚合物由于其优异的亲水性而成为构建伤口敷料和防污涂层的重要生物材料类别。然而,所有报道的两性离子聚合物都是不可降解的,因为它们具有不可裂解的碳-碳键骨架,必须在治疗后定期取出,以避免伤口缺氧,从而导致潜在的二次伤害。在这项工作中,我们首次通过羧基甜菜碱二硫戊烷(CBDS)的开环聚合制备了可生物降解的聚两性离子贴片,通过酰胺间氢键和侧链上的两性离子偶极-偶极相互作用自交联。由于分子间物理相互作用,前所未有的polyCBDS(PCBDS)贴片显示出足够的延展性,可以完全覆盖不规则伤口。由于二硫键和羧基甜菜碱基团的存在,还显示出优异的生物降解性和防污性能。此外,PCBDS降解诱导释放的CBDS具有有效的抗氧化和抗菌活性。这种PCBDS贴片被用作糖尿病伤口敷料,抑制细菌在外表面的粘附,其降解产物可以准确地杀死细菌并清除伤口部位的活性氧以调节局部微环境,包括细胞因子表达和巨噬细胞极化的调节,加速感染的糖尿病伤口修复,避免潜在的二次损伤。本文受版权保护。保留所有权利。
    Zwitterionic polymers have emerged as an important class of biomaterials to construct wound dressings and antifouling coatings over the past decade due to their excellent hydrophilicity. However, all the reported zwitterionic polymers as wound dressings are nondegradable because of noncleavable carbon─carbon bonding backbones, and must be removed periodically after treatment to avoid hypoxia in the wound, thus leading to potential secondary injury. In this work, a biodegradable polyzwitterion patch is fabricated for the first time by ring-opening polymerization of carboxybetaine dithiolane (CBDS), which is self-crosslinked via inter-amide hydrogen bonds and zwitterionic dipole-dipole interactions on the side chains. The unprecedented polyCBDS (PCBDS) patch demonstrates enough ductility owing to the intermolecular physical interactions to fully cover irregular wounds, also showing excellent biodegradability and antifouling performance resulted from the existence of disulfide bonds and carboxybetaine groups. Besides, the PCBDS degradation-induced released CBDS owns potent antioxidant and antibacterial activities. This PCBDS patch is used as a diabetic wound dressing, inhibiting bacterial adhesion on the external surface, and its degradation products can exactly kill bacteria and scavenge excessive reactive oxygen species (ROS) at the wound site to regulate local microenvironment, including regulation of cytokine express and macrophage polarization, accelerating infected diabetic wound repair, and also avoiding the potential secondary injury.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究开发了一种用于食品包装的PEG交联的O-羧甲基壳聚糖(O-CMC-PEG)。首先通过PEG与过量二异氰酸酯的简单缩合反应合成了异氰酸酯封端的PEG交联剂。然后在温和条件下,O-羧甲基壳聚糖(O-CMC)与交联剂之间发生交联,生成具有通过脲键连接的交联结构的O-CMC-PEG。利用FT-IR和1HNMR技术确认了交联剂和O-CMC-PEG的化学结构。进行了广泛的研究以研究PEG含量(或交联度)对浇铸的O-CMC-PEG膜的物理化学特性的影响。结果表明,交联和组分相容性可以改善其拉伸特性和水蒸气阻隔性能,而高PEG含量由于PEG和O-CMC片段之间的微相分离而起到相反的作用。与PEG含量相比,体外降解速率和水敏感性主要取决于交联度。此外,由O-CMC的剩余-NH2基团引起,这些薄膜对大肠杆菌和金黄色葡萄球菌具有抗菌活性。当PEG含量为6%(中等交联度)时,制备的O-CMC-PEG-6%薄膜具有最佳的拉伸特性,高耐水性,适当的降解率,低水蒸气透过率和良好的广谱抗菌能力,显示出在食品包装中应用以延长保质期的巨大潜力。
    This study developed a kind of PEG-crosslinked O-carboxymethyl chitosan (O-CMC-PEG) with various PEG content for food packaging. The crosslinking agent of isocyanate-terminated PEG was firstly synthesized by a simple condensation reaction between PEG and excess diisocyanate, then the crosslink between O-carboxymethyl chitosan (O-CMC) and crosslinking agent occurred under mild conditions to produce O-CMC-PEG with a crosslinked structure linked by urea bonds. FT-IR and 1H NMR techniques were utilized to confirm the chemical structures of the crosslinking agent and O-CMC-PEGs. Extensive research was conducted to investigate the impact of the PEG content (or crosslinking degree) on the physicochemical characteristics of the casted O-CMC-PEG films. The results illuminated that crosslinking and components compatibility could improve their tensile features and water vapor barrier performance, while high PEG content played the inverse effects due to the microphase separation between PEG and O-CMC segments. The in vitro degradation rate and water sensitivity primarily depended on the crosslinking degree in comparison with the PEG content. Furthermore, caused by the remaining -NH2 groups of O-CMC, the films demonstrated antibacterial activity against Escherichia coli and Staphylococcus aureus. When the PEG content was 6% (medium crosslinking degree), the prepared O-CMC-PEG-6% film possessed optimal tensile features, high water resistance, appropriate degradation rate, low water vapor transmission rate and fine broad-spectrum antibacterial capacity, manifesting a great potential for application in food packaging to extend the shelf life.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对环境问题的日益关注和环保可生物降解电池的迅速发展提出了对电池领域增强材料设计的迫切需求。在商业LIB中垄断使用的传统聚丙烯(PP)难以回收。在这项工作中,我们通过聚乙烯醇(PVA)和二元酸(酒石酸,TA)。通过整合非溶剂液相分离,我们成功地生产了具有可调厚度和高孔隙率的热稳定PVA-TA膜。这些特殊设计的PVA-TA隔膜在LiFePO4(LFP)|隔膜|Li电池中实施,产生优异的乘法性能,并在5℃下实现88mAhg-1的容量。简单的小分子交联技术大大减少了聚合物的结晶区域,从而增强离子导电性。值得注意的是,骑自行车后,PVA-TA分离器可以很容易地溶解在95℃的热水中,使其能够重新利用生产新的PVA-TA分离器。因此,这项工作引入了一个新的概念,为可回收锂电池设计绿色和可持续的隔膜。
    The escalating focus on environmental concerns and the swift advancement of eco-friendly biodegradable batteries raises a pressing demand for enhanced material design in the battery field. The traditional polypropylene (PP) that is monopolistically utilized in the commercial LIBs is hard to recycle. In this work, we prepare a novel water degradable separators via the cross-linking of polyvinyl alcohol (PVA) and dibasic acid (tartaric acid, TA). Through the integration of non-solvent liquid-phase separation, we successfully produced a thermally stable PVA-TA membrane with tunable thickness and a high level of porosity. These specially engineered PVA-TA separators were implemented in LiFePO4 (LFP)|separator|Li cells, resulting in superior multiplicative performance and achieving a capacity of 88 mAh g-1 under 5 C. Additionally, the straightforward small molecule cross-linking technique significantly reduced the crystalline region of the polymer, thereby enhancing ionic conductivity. Notably, after cycling, the PVA-TA separators can be easily dissolved in 95 °C hot water, enabling its reutilization for the production of new PVA-TA separators. Therefore, this work introduces a novel concept to design green and sustainable separators for recyclable lithium batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    图像引导的肿瘤消融治疗是主要的癌症治疗选择,但通常需要术中保护性组织移位,以降低对邻近器官的附带损害的风险。护理标准(SoC)策略,如水力解剖(流体注射),受到流体快速扩散和停留时间差的限制,冒着相邻器官受伤的风险,不完全的肿瘤消融增加了癌症复发率,和有限的患者资格。在这里,我们开发了“凝胶解剖”,“一种利用可注射水凝胶实现更持久的技术,可变形,和瞬时组织分离,赋予临床医生改进的消融手术窗口和更大的控制。设计了流变模型来理解和调整凝胶解剖参数。在猪模型中,与盐水相比,凝胶解剖实现了24倍的持久组织分离动力学,注射量减少40%。凝胶解剖实现了腹膜腔内自由漂浮器官之间的抗依赖性解剖和临床上显着的热保护,具有扩大微创治疗技术的潜力,尤其是局部治疗,包括放疗,冷冻消融,内窥镜检查,和手术。本文受版权保护。保留所有权利。
    Image-guided tumor ablative therapies are mainstay cancer treatment options but often require intra-procedural protective tissue displacement to reduce the risk of collateral damage to neighboring organs. Standard of care strategies, such as hydrodissection (fluidic injection), are limited by rapid diffusion of fluid and poor retention time, risking injury to adjacent organs, increasing cancer recurrence rates from incomplete tumor ablations, and limiting patient qualification. Herein, a \"gel-dissection\" technique is developed, leveraging injectable hydrogels for longer-lasting, shapeable, and transient tissue separation to empower clinicans with improved ablation operation windows and greater control. A rheological model is designed to understand and tune gel-dissection parameters. In swine models, gel-dissection achieves 24 times longer-lasting tissue separation dynamics compared to saline, with 40% less injected volume. Gel-dissection achieves anti-dependent dissection between free-floating organs in the peritoneal cavity and clinically significant thermal protection, with the potential to expand minimally invasive therapeutic techniques, especially across locoregional therapies including radiation, cryoablation, endoscopy, and surgery.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传统的压电纳米发电机(PNG)在退化和可重用性方面面临挑战,对环境有负面影响。另一方面,生物相容性和可降解压电材料通常表现出较低的压电响应。在这项研究中,使用铌酸钾钠(KNN)粉末和可生物降解的聚合物聚(ε-己内酯)(PCL)通过溶液流延法制备压电复合薄膜。通过构建交错电极,总极化电荷量增加,实现更大的电流输出。基于具有15wt%KNN粉末的复合膜的三单元PNG(3-PNG),达到0.85μA的最大输出电流,与1-PNG相比具有更高的充电效率。此外,制备的3-PNG可以有效地从人类活动中获取机械能,并在经过10,000次弯曲和释放循环后保持稳定的输出。当暴露于酸性时,薄膜表现出完全降解,中性,碱性溶液。这项研究为选择环境友好的压电材料提供了一个有前途的选择,并通过优化的结构设计提高了输出性能,使它们更适合实际应用。
    Conventional piezoelectric nanogenerators (PNGs) face challenges in terms of degradation and reusability, which have negative environmental implications. On the other hand, biocompatible and degradable piezoelectric materials often exhibit lower piezoelectric response. In this study, potassium sodium niobate (KNN) powder and the biodegradable polymer poly(ε-caprolactone) (PCL) were used to fabricate piezoelectric composite films through solution casting. By constructing staggered electrodes, the total polarized charges quantity is increased, achieving a larger current output. The three-unit PNG (3-PNG) based on the composite film with 15 wt% KNN powder, reaches a maximum output current of 0.85 μA, which exhibits higher charging efficiency compared to 1-PNG. Moreover, the prepared 3-PNG can effectively harvest mechanical energy from human activities and maintain a stable output after 10,000 cycles of bending and releasing. The film exhibits complete degradation when exposed to acidic, neutral, and alkaline solutions. This research provides a promising option for environmentally friendly piezoelectric materials selected and output performance enhanced through optimized structural designs, making them more suitable for practical applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环境友好的交联聚合物网络具有可降解的共价键或非共价键,其中许多表现出动态特征。这些属性可以方便地降级,容易的可重复处理性,和自我修复能力。然而,这些交联键的固有不稳定性通常会损害聚合物网络的机械性能,限制其实际应用。在这种情况下,环境友好的双交联聚合物网络(称为EF-DCPN)已成为解决这一挑战的有希望的替代品。这些材料有效地平衡了对高机械性能和降解能力的需求,回收,和/或自我治愈。尽管他们有很大的潜力,对EF-DCPN的调查仍处于起步阶段,一些差距和限制仍然存在。这篇综述提供了综合的全面概述,属性,EF-DCPNs的最新进展和应用。首先,具有两种不同类型的动态键的多种EF-DCPN的合成路线(即,亚胺,二硫化物,酯,氢键,协调债券,和其他债券)的推出。随后,复杂的结构和动态性质相关的机械,热,并讨论了EF-DCPNs的电性能,其次是它们在电子和生物技术中的示范性应用。最后,概述了这一快速发展领域未来的研究方向。
    Environmentally friendly crosslinked polymer networks feature degradable covalent or non-covalent bonds, with many of them manifesting dynamic characteristics. These attributes enable convenient degradation, facile reprocessibility, and self-healing capabilities. However, the inherent instability of these crosslinking bonds often compromises the mechanical properties of polymer networks, limiting their practical applications. In this context, environmentally friendly dual-crosslinking polymer networks (denoted EF-DCPNs) have emerged as promising alternatives to address this challenge. These materials effectively balance the need for high mechanical properties with the ability to degrade, recycle, and/or self-heal. Despite their promising potential, investigations into EF-DCPNs remain in their nascent stages, and several gaps and limitations persist. This Review provides a comprehensive overview of the synthesis, properties, and applications of recent progress in EF-DCPNs. Firstly, synthetic routes to a rich variety of EF-DCPNs possessing two distinct types of dynamic bonds (i.e., imine, disulfide, ester, hydrogen bond, coordination bond, and other bonds) are introduced. Subsequently, complex structure- and dynamic nature-dependent mechanical, thermal, and electrical properties of EF-DCPNs are discussed, followed by their exemplary applications in electronics and biotechnology. Finally, future research directions in this rapidly evolving field are outlined.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可降解的可穿戴电子设备正在吸引越来越多的关注,以削弱或消除废物电子废物的负面影响,并促进无需二次后处理的医疗植入物的发展。尽管已经探索了各种可降解材料用于可穿戴电子设备,具有高度传感性能和低成本制造的集成特性的可降解可穿戴电子产品的开发仍然具有挑战性。在这里,我们开发了一个简单的,低成本,和环境友好的方法来制造基于生物相容性和可降解丝素蛋白的可穿戴电子设备(SFWE),用于体内监测。玫瑰花瓣模板和中空碳纳米球的组合使制成的SFWE具有良好的灵敏度(5.63kPa-1),快速响应时间(147ms),和稳定的耐久性(15,000次循环)。在1MNaOH溶液中观察到可降解现象,证实了基于丝素蛋白的可穿戴电子设备具有可降解特性。此外,已证明制造的SFWE具有监测关节弯曲的能力,肌肉运动,和面部表情。这项工作提供了一种生态良性和具有成本效益的方法来制造高性能的可穿戴电子产品。
    Degradable wearable electronics are attracting increasing attention to weaken or eliminate the negative effect of waste e-wastes and promote the development of medical implants without secondary post-treatment. Although various degradable materials have been explored for wearable electronics, the development of degradable wearable electronics with integrated characteristics of highly sensing performances and low-cost manufacture remains challenging. Herein, we developed a facile, low-cost, and environmentally friendly approach to fabricate a biocompatible and degradable silk fibroin based wearable electronics (SFWE) for on-body monitoring. A combination of rose petal templating and hollow carbon nanospheres endows as-fabricated SFWE with good sensitivity (5.63 kPa-1), a fast response time (147 ms), and stable durability (15,000 cycles). The degradable phenomenon has been observed in the solution of 1 M NaOH, confirming that silk fibroin based wearable electronics possess degradable property. Furthermore, the as-fabricated SFWE have been demonstrated that have abilities to monitor knuckle bending, muscle movement, and facial expression. This work offers an ecologically-benign and cost-effective approach to fabricate high-performance wearable electronics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号