deep‐learning

  • 文章类型: Journal Article
    单分子定位显微镜(SMLM)正在成为细胞生物学中广泛使用的技术。处理完图像后,分子定位通常作为xy(或xyz)坐标存储在表中,有了更多的信息,比如光子的数量,等。这组坐标可用于生成图像以可视化分子分布,例如,定位的2D或3D直方图。已经设计了许多不同的方法来分析SMLM数据,其中,对定位的聚类分析很流行。然而,首先对数据进行分段可能很有用,提取细胞特定区域或单个细胞中的位置,在下游分析之前。在这里,我们描述了一个用于在SMLM数据集中注释定位的管道,其中我们比较了膜分割方法,包括Otsu阈值和机器学习模型,以及随后的细胞分割。我们使用了从切片细胞颗粒的dSTORM图像中导出的SMLM数据集,染色的膜蛋白EGFR(表皮生长因子受体)和EREG(表观调节蛋白)作为测试数据集。我们发现,在我们的数据上重新训练的Cellpose模型在膜分割任务中表现最好,允许我们对膜与细胞内部定位进行下游聚类分析。我们预计这对于SMLM分析通常是有用的。
    Single Molecule Localisation Microscopy (SMLM) is becoming a widely used technique in cell biology. After processing the images, the molecular localisations are typically stored in a table as xy (or xyz) coordinates, with additional information, such as number of photons, etc. This set of coordinates can be used to generate an image to visualise the molecular distribution, for example, a 2D or 3D histogram of localisations. Many different methods have been devised to analyse SMLM data, among which cluster analysis of the localisations is popular. However, it can be useful to first segment the data, to extract the localisations in a specific region of a cell or in individual cells, prior to downstream analysis. Here we describe a pipeline for annotating localisations in an SMLM dataset in which we compared membrane segmentation approaches, including Otsu thresholding and machine learning models, and subsequent cell segmentation. We used an SMLM dataset derived from dSTORM images of sectioned cell pellets, stained for the membrane proteins EGFR (epidermal growth factor receptor) and EREG (epiregulin) as a test dataset. We found that a Cellpose model retrained on our data performed the best in the membrane segmentation task, allowing us to perform downstream cluster analysis of membrane versus cell interior localisations. We anticipate this will be generally useful for SMLM analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    本研究深入研究了具有100个压力传感器像素的新型10x10传感器阵列的开发,实现显着的灵敏度高达888.79kPa-1,通过传感器结构的创新设计。固有的应变灵敏度的关键挑战是在可拉伸压阻式压力传感器中解决,一个因其实际应用潜力而引起极大兴趣的领域。这种方法涉及合成和静电纺丝聚丁二烯-氨基甲酸酯(PBU),可逆交联聚合物,随后用MXene纳米片涂覆以产生导电织物。该制造技术通过最小化初始电流值并结合具有选择性涂覆的Ag纳米线(AgNWs)的半圆柱形电极以实现最佳导电性而策略性地增强传感器灵敏度。预应变法在电极施工中的应用确保了应变免疫,在膨胀下保持传感器的电气特性。传感器阵列通过在风感测试中持续检测甚至来自气枪的细微气流,表现出卓越的灵敏度,虽然一种新颖的深度学习方法显着提高了基于聚合物的可拉伸机械传感器的长期传感精度,标志着传感器技术的重大进步。这项研究提出了提高可拉伸压阻式压力传感器的可靠性和性能的重要一步,为他们目前的局限性提供全面的解决方案。
    This study delves into the development of a novel 10 by 10 sensor array featuring 100 pressure sensor pixels, achieving remarkable sensitivity up to 888.79 kPa-1, through the innovative design of sensor structure. The critical challenge of strain sensitivity inherent is addressed in stretchable piezoresistive pressure sensors, a domain that has seen significant interest due to their potential for practical applications. This approach involves synthesizing and electrospinning polybutadiene-urethane (PBU), a reversible cross-linking polymer, subsequently coated with MXene nanosheets to create a conductive fabric. This fabrication technique strategically enhances sensor sensitivity by minimizing initial current values and incorporating semi-cylindrical electrodes with Ag nanowires (AgNWs) selectively coated for optimal conductivity. The application of a pre-strain method to electrode construction ensures strain immunity, preserving the sensor\'s electrical properties under expansion. The sensor array demonstrated remarkable sensitivity by consistently detecting even subtle airflow from an air gun in a wind sensing test, while a novel deep learning methodology significantly enhanced the long-term sensing accuracy of polymer-based stretchable mechanical sensors, marking a major advancement in sensor technology. This research presents a significant step forward in enhancing the reliability and performance of stretchable piezoresistive pressure sensors, offering a comprehensive solution to their current limitations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Letter
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    使用可穿戴智能系统实时脚压监测,全面的足部健康监测和分析,可以提高生活质量和预防足部相关疾病。然而,传统的智能鞋垫解决方案依赖于人工特征提取的基本数据分析方法,仅限于实时足底压力映射和步态分析,未能满足用户对全面足部保健的多样化需求。为了解决这个问题,我们提出了一种支持深度学习的智能鞋垫系统,包括足底压力传感鞋垫,便携式电路板,深度学习和数据分析模块,和软件接口。电容式感应鞋垫可以映射静态和动态足底压力,具有超过500kPa的宽范围和出色的灵敏度。统计工具用于分析长期足部压力使用数据,提供早期预防足部疾病的指标和深度学习算法的关键数据标签,以揭示足底压力模式与足部问题之间的关系。此外,分割方法辅助的深度学习模型被实现为运动疲劳识别作为概念的证明,达到95%的高分类准确率。该系统还展示了各种足部保健应用,包括日常活动统计,避免运动损伤,和糖尿病足溃疡的预防。
    Real-time foot pressure monitoring using wearable smart systems, with comprehensive foot health monitoring and analysis, can enhance quality of life and prevent foot-related diseases. However, traditional smart insole solutions that rely on basic data analysis methods of manual feature extraction are limited to real-time plantar pressure mapping and gait analysis, failing to meet the diverse needs of users for comprehensive foot healthcare. To address this, we propose a deep learning-enabled smart insole system comprising a plantar pressure sensing insole, portable circuit board, deep learning and data analysis blocks, and software interface. The capacitive sensing insole can map both static and dynamic plantar pressure with a wide range over 500 kPa and excellent sensitivity. Statistical tools are used to analyze long-term foot pressure usage data, providing indicators for early prevention of foot diseases and key data labels for deep learning algorithms to uncover insights into the relationship between plantar pressure patterns and foot issues. Additionally, a segmentation method assisted deep learning model is implemented for exercise-fatigue recognition as a proof of concept, achieving a high classification accuracy of 95%. The system also demonstrates various foot healthcare applications, including daily activity statistics, exercise injury avoidance, and diabetic foot ulcer prevention.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:方向调制近距离放射治疗(DMBT)可以实现适形剂量分布。然而,临床医生在快节奏的临床环境中创建可行的治疗计划可能面临挑战,尤其是像DMBT这样的新技术,累积的临床经验有限。基于深度学习的剂量预测方法已经成为提高效率的有效工具。
    目的:使用注意门控机制和3DUNET开发一种用于宫颈癌高剂量率(HDR)近距离放射治疗计划的体素剂量预测模型,DMBT六槽tandem与卵形或环形涂抹器。
    方法:使用了122个回顾性临床HDR近距离放射治疗计划的多机构队列,治疗剂量范围为4.8-7.0Gy/分数。构建了DMBT串联模型,并将其作为3D实体模型涂抹器纳入了近距离视觉治疗计划系统(BV-TPS)的研究版本,并由经验丰富的专家回顾性地重新计划了所有病例。这些计划被随机分为64:16:20作为培训,正在验证,和测试队列,分别。将数据增强应用于训练集和验证集以将大小增加4倍。开发了一种注意力门控的3DUNET体系结构模型,以基于高风险临床目标体积(CTVHR)和风险器官(OAR)轮廓信息来预测完整的3D剂量分布。使用平均绝对误差损失函数对模型进行训练,亚当优化算法,学习率为0.001,250个周期,批量大小为8。此外,同样训练了基线UNET模型进行比较.通过根据平均剂量值和从3D剂量分布导出的剂量-体积-直方图指数分析结果,并使用剂量统计和临床上有意义的剂量测定指数将生成的剂量分布与地面实况剂量分布进行比较,在测试数据集上评估模型性能。
    结果:所提出的注意力门控3DUNET模型在预测3D剂量分布方面显示出竞争性准确性,该剂量分布与地面真实剂量分布非常相似。平均绝对误差的平均值为1.82±29.09Gy(vs.6.41±20.16Gy对于基线UNET)在CTVHR,0.89±1.25Gy(vs.膀胱中基线UNET)为0.94±3.96Gy,0.33±0.67Gy(vs.0.53±1.66Gy的基线UNET)在直肠中,和0.55±1.57Gy(vs.基线UNET为0.76±2.89Gy)在乙状结肠中。结果表明,膀胱的平均绝对误差(MAE),直肠,乙状结肠为0.22±1.22Gy(3.62%)(p=0.015),0.21±1.06Gy(2.20%)(p=0.172),和-0.03±0.54Gy(1.13%)(p=0.774),分别。D90,V100%的MAE,CTVHR的V150%为0.46±2.44Gy(8.14%)(p=0.018),0.57±11.25%(5.23%)(p=0.283),和-0.43±19.36%(4.62%)(p=0.190),分别。对于任何新的患者计划,所提出的模型需要不到5s的时间来预测64×64×64体素的完整3D剂量分布。因此,它足以用于近实时应用,并有助于临床决策。
    结论:注意力门控3D-UNET模型证明了预测体素剂量预测的能力,与3DUNET相比,DMBT腔内近距离放射治疗计划。所提出的模型可用于在DMBT计划和质量保证之前获得剂量分布以进行近实时决策。这将指导未来的自动化规划,使工作流程更有效和临床可行。
    BACKGROUND: Direction Modulated Brachytherapy (DMBT) enables conformal dose distributions. However, clinicians may face challenges in creating viable treatment plans within a fast-paced clinical setting, especially for a novel technology like DMBT, where cumulative clinical experience is limited. Deep learning-based dose prediction methods have emerged as effective tools for enhancing efficiency.
    OBJECTIVE: To develop a voxel-wise dose prediction model using an attention-gating mechanism and a 3D UNET for cervical cancer high-dose-rate (HDR) brachytherapy treatment planning with DMBT six-groove tandems with ovoids or ring applicators.
    METHODS: A multi-institutional cohort of 122 retrospective clinical HDR brachytherapy plans treated to a prescription dose in the range of 4.8-7.0 Gy/fraction was used. A DMBT tandem model was constructed and incorporated onto a research version of BrachyVision Treatment Planning System (BV-TPS) as a 3D solid model applicator and retrospectively re-planned all cases by seasoned experts. Those plans were randomly divided into 64:16:20 as training, validating, and testing cohorts, respectively. Data augmentation was applied to the training and validation sets to increase the size by a factor of 4. An attention-gated 3D UNET architecture model was developed to predict full 3D dose distributions based on high-risk clinical target volume (CTVHR) and organs at risk (OARs) contour information. The model was trained using the mean absolute error loss function, Adam optimization algorithm, a learning rate of 0.001, 250 epochs, and a batch size of eight. In addition, a baseline UNET model was trained similarly for comparison. The model performance was evaluated on the testing dataset by analyzing the outcomes in terms of mean dose values and derived dose-volume-histogram indices from 3D dose distributions and comparing the generated dose distributions against the ground-truth dose distributions using dose statistics and clinically meaningful dosimetric indices.
    RESULTS: The proposed attention-gated 3D UNET model showed competitive accuracy in predicting 3D dose distributions that closely resemble the ground-truth dose distributions. The average values of the mean absolute errors were 1.82 ± 29.09 Gy (vs. 6.41 ± 20.16 Gy for a baseline UNET) in CTVHR, 0.89 ± 1.25 Gy (vs. 0.94 ± 3.96 Gy for a baseline UNET) in the bladder, 0.33 ± 0.67 Gy (vs. 0.53 ± 1.66 Gy for a baseline UNET) in the rectum, and 0.55 ± 1.57 Gy (vs. 0.76 ± 2.89 Gy for a baseline UNET) in the sigmoid. The results showed that the mean absolute error (MAE) for the bladder, rectum, and sigmoid were 0.22 ± 1.22 Gy (3.62%) (p = 0.015), 0.21 ± 1.06 Gy (2.20%) (p = 0.172), and -0.03 ± 0.54 Gy (1.13%) (p = 0.774), respectively. The MAE for D90, V100%, and V150% of the CTVHR were 0.46 ± 2.44 Gy (8.14%) (p = 0.018), 0.57 ± 11.25% (5.23%) (p = 0.283), and -0.43 ± 19.36% (4.62%) (p = 0.190), respectively. The proposed model needs less than 5 s to predict a full 3D dose distribution of 64 × 64 × 64 voxels for any new patient plan, thus making it sufficient for near real-time applications and aiding with decision-making in the clinic.
    CONCLUSIONS: Attention gated 3D-UNET model demonstrated a capability in predicting voxel-wise dose prediction, in comparison to 3D UNET, for DMBT intracavitary brachytherapy planning. The proposed model could be used to obtain dose distributions for near real-time decision-making before DMBT planning and quality assurance. This will guide future automated planning, making the workflow more efficient and clinically viable.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    快速眼动睡眠与各种生物医学信号的明显变化有关,这些变化在睡眠期间很容易被捕获。让自己使用机器学习系统进行自动睡眠分期。这里,我们提供了与快速眼动睡眠相关的生物医学信号的关键特征,以及如何将其用于自动睡眠评估。我们总结了自动睡眠分期系统的关键历史发展,现在已经实现了与人类专家评分者相当的分类准确性及其在临床环境中的作用。我们还讨论了消费者睡眠跟踪器的快速眼动睡眠评估及其在全球范围内进行前所未有的睡眠评估的潜力。最后,我们提供了计算机快速眼动睡眠评估的未来前景以及AI系统可能扮演的角色。
    Rapid eye movement sleep is associated with distinct changes in various biomedical signals that can be easily captured during sleep, lending themselves to automated sleep staging using machine learning systems. Here, we provide a perspective on the critical characteristics of biomedical signals associated with rapid eye movement sleep and how they can be exploited for automated sleep assessment. We summarise key historical developments in automated sleep staging systems, having now achieved classification accuracy on par with human expert scorers and their role in the clinical setting. We also discuss rapid eye movement sleep assessment with consumer sleep trackers and its potential for unprecedented sleep assessment on a global scale. We conclude by providing a future outlook of computerised rapid eye movement sleep assessment and the role AI systems may play.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:减少磁共振成像(MRI)扫描时间一直是临床应用的重要问题。为了减少MRI扫描时间,通过欠采样k空间数据使成像加速成为可能。这是通过利用来自多个,独立的接收器线圈,从而减少采样的k空间线的数量。
    目的:本研究的目的是开发一种用于在嘈杂环境中减少数量的自动校准信号(ACS)线的并行成像的深度学习方法。
    方法:开发了一种循环内插器网络,用于在嘈杂环境中使用少量ACS线对并行MRI进行鲁棒重建。网络估计每个线圈数据的缺失(未采样)线,然后利用这些估计的缺失线来重新估计采样的k空间线。此外,开发了一种切片感知重建技术,用于噪声鲁棒重建,同时减少了ACS线的数量。我们进行了一项评估研究,使用从3TMRI的三名健康志愿者获得的回顾性子采样数据,涉及三种不同的切片厚度(1.5、3.0和4.5mm)和三种不同的图像对比度(T1w,T2w,和FLAIR)。
    结果:尽管在ACS线数量有限且切片较薄的情况下,大量噪音带来了挑战,切片感知周期内插器网络重建增强的并行图像。它胜过RAKI,有效消除混叠伪影。此外,拟议的网络优于GRAPPA,并证明了即使在严重的嘈杂条件下也能成功重建大脑图像的能力。
    结论:切片感知周期内插器网络具有提高重建精度的潜力,可以在嘈杂的环境中减少ACS线的数量。
    BACKGROUND: Reducing Magnetic resonance imaging (MRI) scan time has been an important issue for clinical applications. In order to reduce MRI scan time, imaging acceleration was made possible by undersampling k-space data. This is achieved by leveraging additional spatial information from multiple, independent receiver coils, thereby reducing the number of sampled k-space lines.
    OBJECTIVE: The aim of this study is to develop a deep-learning method for parallel imaging with a reduced number of auto-calibration signals (ACS) lines in noisy environments.
    METHODS: A cycle interpolator network is developed for robust reconstruction of parallel MRI with a small number of ACS lines in noisy environments. The network estimates missing (unsampled) lines of each coil data, and these estimated missing lines are then utilized to re-estimate the sampled k-space lines. In addition, a slice aware reconstruction technique is developed for noise-robust reconstruction while reducing the number of ACS lines. We conducted an evaluation study using retrospectively subsampled data obtained from three healthy volunteers at 3T MRI, involving three different slice thicknesses (1.5, 3.0, and 4.5 mm) and three different image contrasts (T1w, T2w, and FLAIR).
    RESULTS: Despite the challenges posed by substantial noise in cases with a limited number of ACS lines and thinner slices, the slice aware cycle interpolator network reconstructs the enhanced parallel images. It outperforms RAKI, effectively eliminating aliasing artifacts. Moreover, the proposed network outperforms GRAPPA and demonstrates the ability to successfully reconstruct brain images even under severe noisy conditions.
    CONCLUSIONS: The slice aware cycle interpolator network has the potential to improve reconstruction accuracy for a reduced number of ACS lines in noisy environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:开发和评估一种基于深度学习(DL)的快速图像重建和运动校正技术,用于3T的高分辨率笛卡尔首过心肌灌注成像,同时进行单层(SS)和多层(SMS)采集。
    方法:3D物理驱动的展开网络结构用于重建高分辨率笛卡尔灌注成像。从来自20个受试者的135个切片训练SS和SMS多频带(MB)=2个网络。结构相似性指数(SSIM),峰值信噪比(PSNR),并对归一化RMS误差(NRMSE)进行了评估,前瞻性图像由两名经验丰富的心脏病学家(5名,优;1名,差)进行盲目分级.对于呼吸运动校正,提出了一种基于二维U-Net的运动校正网络,并计算时间保真度和二阶导数以评估运动校正的性能。
    结果:在所提出的具有高SSIM和PSNR的技术中证明了出色的性能,低NRMSE。图像质量评分为(4.3[4.3,4.4],4.5[4.4,4.6],4.3[4.3,4.4],和4.5[4.3,4.5])对于SSDL和SSL1-SENSE,MB=2DL和MB=2SMS-L1-SENSE,分别,显示(SMS)-L1-SENSE与所提出的DL技术之间没有统计学上的显著差异(对于SS和SMS,p>0.05)。网络推断时间为每个动态灌注系列约4s,具有40帧,而(SMS)-L1-SENSE与GPU加速的时间约为30分钟。
    结论:提出的基于DL的图像重建和运动校正技术能够在3T下快速高质量地重建SS和SMSMB=2高分辨率笛卡尔首过灌注成像。
    OBJECTIVE: To develop and evaluate a deep learning (DL) -based rapid image reconstruction and motion correction technique for high-resolution Cartesian first-pass myocardial perfusion imaging at 3T with whole-heart coverage for both single-slice (SS) and simultaneous multi-slice (SMS) acquisitions.
    METHODS: 3D physics-driven unrolled network architectures were utilized for the reconstruction of high-resolution Cartesian perfusion imaging. The SS and SMS multiband (MB) = 2 networks were trained from 135 slices from 20 subjects. Structural similarity index (SSIM), peak SNR (PSNR), and normalized RMS error (NRMSE) were assessed, and prospective images were blindly graded by two experienced cardiologists (5, excellent; 1, poor). For respiratory motion correction, a 2D U-Net based motion corrected network was proposed, and the temporal fidelity and second-order derivative were calculated to assess the performance of the motion correction.
    RESULTS: Excellent performance was demonstrated in the proposed technique with high SSIM and PSNR, and low NRMSE. Image quality scores were (4.3 [4.3, 4.4], 4.5 [4.4, 4.6], 4.3 [4.3, 4.4], and 4.5 [4.3, 4.5]) for SS DL and SS L1-SENSE, MB = 2 DL and MB = 2 SMS-L1-SENSE, respectively, showing no statistically significant difference (p > 0.05 for SS and SMS) between (SMS)-L1-SENSE and the proposed DL technique. The network inference time was around 4 s per dynamic perfusion series with 40 frames while the time of (SMS)-L1-SENSE with GPU acceleration was approximately 30 min.
    CONCLUSIONS: The proposed DL-based image reconstruction and motion correction technique enabled rapid and high-quality reconstruction for SS and SMS MB = 2 high-resolution Cartesian first-pass perfusion imaging at 3T.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    固有磁性细胞自然存在于生物体内,被认为与铁代谢和某些细胞功能有关,而这种磁性的功能意义在很大程度上尚未被探索。为了更好地理解这个属性,一种名为基于光学跟踪的磁传感器(OTMS)已经开发。这种多目标跟踪系统旨在测量单个细胞的磁矩。OTMS产生可调谐磁场并在磁性细胞中诱导运动,随后通过基于学习的检测跟踪系统进行分析。可以同时计算大量细胞的磁矩,从而提供了一种定量工具来评估群体内的细胞磁特性。部署OTMS后,发现了人类外周单核细胞中稳定的磁性细胞群。在临床血液样本分析中的进一步应用揭示了一种有趣的模式:系统性红斑狼疮(SLE)患者和健康志愿者之间磁性单核细胞的比例显着不同。这种变异与疾病活动呈正相关,在类风湿关节炎(RA)患者中未观察到的趋势。这项研究,因此,提出了研究天然存在的磁性细胞的磁性特性的新前沿,为利用细胞磁性的潜在诊断和治疗应用打开了大门。
    Intrinsically magnetic cells naturally occur within organisms and are believed to be linked to iron metabolism and certain cellular functions while the functional significance of this magnetism is largely unexplored. To better understand this property, an approach named Optical Tracking-based Magnetic Sensor (OTMS) has been developed. This multi-target tracking system is designed to measure the magnetic moment of individual cells. The OTMS generates a tunable magnetic field and induces movement in magnetic cells that are subsequently analyzed through a learning-based tracking-by-detection system. The magnetic moment of numerous cells can be calculated simultaneously, thereby providing a quantitative tool to assess cellular magnetic properties within populations. Upon deploying the OTMS, a stable population of magnetic cells in human peripheral monocytes is discovered. Further application in the analysis of clinical blood samples reveals an intriguing pattern: the proportion of magnetic monocytes differs significantly between systemic lupus erythematosus (SLE) patients and healthy volunteers. This variation is positively correlated with disease activity, a trend not observed in patients with rheumatoid arthritis (RA). The study, therefore, presents a new frontier in the investigation of the magnetic characteristics of naturally occurring magnetic cells, opening the door to potential diagnostic and therapeutic applications that leverage cellular magnetism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:研究表明,深度学习影像组学(DLR)可以帮助区分胶质母细胞瘤(GBM)和孤立性脑转移瘤(SBM),但是整合人口统计学-MRI和DLR特征是否可以更准确地区分GBM和SBM仍不确定.
    目的:构建并验证整合人口统计学-MRI和DLR特征的人口统计学-MRI深度学习影像组学列线图(DDLRN),以在术前区分GBM和SBM。
    方法:回顾性。
    方法:两百三十五例GBM(N=115)或SBM(N=120)患者,随机分为训练队列(90GBM和98SBM)和验证队列(25GBM和22SBM)。
    轴向T2加权快速自旋回波序列(T2WI),T2加权流体衰减反演恢复序列(T2-FLAIR),以及使用1.5T和3.0T扫描仪的对比度增强的T1加权自旋回波序列(CE-T1WI)。
    结果:人口统计学-MRI特征具有七个影像学特征(\“池标志,\"\"不规则环标志,\"\"常规戒指标志,肿瘤内血管征,“瘤周水肿面积与肿瘤增强面积之比,T2-FLAIR与CE-T1WI上的病变面积之比,和肿瘤位置)和人口统计学因素(年龄和性别)。基于多参数MRI,影像组学和深度学习(DL)模型,DLR签名,和DDLRN进行了开发和验证。
    方法:Mann-WhitneyU检验,皮尔逊测试,最小绝对收缩和选择运算符,并将支持向量机算法应用于影像组学和DL模型的特征选择和构建。
    结果:DDLRN在训练和验证队列中显示出区别GBM和SBM的最佳表现,曲线下面积(AUC)为0.999和0.947,分别。此外,DLR签名(AUC=0.938)优于影像组学和DL模型,人口统计学-MRI特征(AUC=0.775)与验证队列中的T2-FLAIR影像组学和DL模型(AUC分别为0.762和0.749)相当.
    结论:DDLRN整合了人口统计学-MRI和DLR特征,在区分GBM和SBM方面表现优异。
    方法:3技术效果:阶段2。
    BACKGROUND: Studies have shown that deep-learning radiomics (DLR) could help differentiate glioblastoma (GBM) from solitary brain metastasis (SBM), but whether integrating demographic-MRI and DLR features can more accurately distinguish GBM from SBM remains uncertain.
    OBJECTIVE: To construct and validate a demographic-MRI deep-learning radiomics nomogram (DDLRN) integrating demographic-MRI and DLR signatures to differentiate GBM from SBM preoperatively.
    METHODS: Retrospective.
    METHODS: Two hundred and thirty-five patients with GBM (N = 115) or SBM (N = 120), randomly divided into a training cohort (90 GBM and 98 SBM) and a validation cohort (25 GBM and 22 SBM).
    UNASSIGNED: Axial T2-weighted fast spin-echo sequence (T2WI), T2-weighted fluid-attenuated inversion recovery sequence (T2-FLAIR), and contrast-enhanced T1-weighted spin-echo sequence (CE-T1WI) using 1.5-T and 3.0-T scanners.
    RESULTS: The demographic-MRI signature was constructed with seven imaging features (\"pool sign,\" \"irregular ring sign,\" \"regular ring sign,\" \"intratumoral vessel sign,\" the ratio of the area of peritumoral edema to the enhanced tumor, the ratio of the lesion area on T2-FLAIR to CE-T1WI, and the tumor location) and demographic factors (age and sex). Based on multiparametric MRI, radiomics and deep-learning (DL) models, DLR signature, and DDLRN were developed and validated.
    METHODS: The Mann-Whitney U test, Pearson test, least absolute shrinkage and selection operator, and support vector machine algorithm were applied for feature selection and construction of radiomics and DL models.
    RESULTS: DDLRN showed the best performance in differentiating GBM from SBM with area under the curves (AUCs) of 0.999 and 0.947 in the training and validation cohorts, respectively. Additionally, the DLR signature (AUC = 0.938) outperformed the radiomics and DL models, and the demographic-MRI signature (AUC = 0.775) was comparable to the T2-FLAIR radiomics and DL models in the validation cohort (AUC = 0.762 and 0.749, respectively).
    CONCLUSIONS: DDLRN integrating demographic-MRI and DLR signatures showed excellent performance in differentiating GBM from SBM.
    METHODS: 3 TECHNICAL EFFICACY: Stage 2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号