cyclopropanation

环丙烷化
  • 文章类型: Journal Article
    背景:环丙烷骨架由于其独特的结构特性而在生物活性分子中起着重要作用。这引起了人们对立体选择性合成环丙烷衍生物领域的浓厚兴趣和深入探索。在本研究中,通过3-重氮-N-甲基吲哚(R1)与两种类型的缺电子烯烃(R2和R3)的无催化剂[21]-环丙烷化反应,非对映异构合成环丙烷衍生物的机理和立体选择性的起源已经使用DFT计算进行了研究。研究结果表明,这些[2+1]环加成反应分两个阶段进行,其中第一步不仅是速率决定步骤,而且还严格地决定了产物的立体选择性。计算的非对映异构体比例与实验结果一致。此外,通过利用非共价相互作用(NCI)分析和基于分子力场(EDA-FF)的能量分解分析,我们阐明了在过渡态TS1s的第一个步骤的反应物片段之间的静电相互作用是决定立体选择性的主要因素,与实验假设的空间位阻和π-π堆叠相互作用相反。
    方法:使用DFT方法在M06-2X(D3)/SMD/6-31G(d,P)理论水平。基于M06-2X(D3)/6-311G(d,P)水平。使用高斯09软件进行所有DFT计算。使用CYLview软件可视化优化的分子结构。使用Multiwfn和VMD软件进行NCI分析。Multiwfn程序也用于CDFT和EDA-FF分析。
    BACKGROUND: The cyclopropane skeleton plays a significant role in bioactive  molecules due to its distinctive structural properties. This has sparked keen interest and in-depth exploration in the field of stereoselective synthesis of cyclopropane derivatives. In the present study, the mechanism and the origin of stereoselectivity of diastereodivergent synthesis of cyclopropane derivatives via the catalyst-free [2 + 1]-cyclopropanation reactions of 3-diazo-N-methylindole (R1) with two types of electron-deficient olefins (R2 and R3) in both aqueous and toluene media have been studied using the DFT calculations. The findings indicate that these [2 + 1] cycloaddition reactions proceed in two stages, where the first step is not only the rate-determining step but also critically dictates the stereoselectivity of the product. The calculated diastereomeric ratios are in agreement with the experimental results. Furthermore, by utilizing non-covalent interaction (NCI) analysis and energy decomposition analysis based on molecular force fields (EDA-FF), we elucidated that the electrostatic interactions between reactant fragments in the transition state TS1s for the first step are the predominant factors determining the stereoselectivity, as opposed to the experimentally hypothesized steric hindrance and π-π stacking interactions.
    METHODS: The geometrical structures of all minima and transition states on the potential energy surface (PES) in solvents water and toluene were fully optimized using the DFT method at the M06-2X(D3)/SMD/6-31 + G(d,p) level of theory. Single-point energy calculations were carried out based on the optimized geometries in the solution at the M06-2X(D3)/6-311 + G(d,p) level. All the DFT calculations were performed using the Gaussian 09 software. The optimized molecular structures were visualized using CYLview software. NCI analysis was performed using the Multiwfn and VMD softwares. The Multiwfn program was also used for CDFT and EDA-FF analyses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过烯丙基重氮酯的环化合成环丙烷是众所周知的。在先前对倍半萜烯醇的研究中,我们试图对含有嵌入6-oxa-双环[3.2.1]-oct-3-ene骨架中的电子非偏置烯烃的烯丙基重氮基酯进行分子内环丙烷化。我们仅获得了由氧和碳的1,2-加成(烷氧基化)到烯烃中产生的产物。虽然已经报道了当使用富电子烯烃(例如烯醇醚)时的烷氧基化产物,源自电子无偏烯烃的例子很少见。这里,我们确定烷氧基化对于一系列6-氧杂-双环[3.2.1]-oct-3-烯底物是通用的,并且表明这些产物在更简单的α-重氮β-酮酯的环化中竞争性地形成。我们的数据表明,在过渡态下增加的电荷分离可以促进烷氧基化途径。
    The synthesis of cyclopropanes by the cyclization of allylic diazoesters is well-known. In prior studies toward the sesquiterpenoid euonyminol, we attempted to carry out an intramolecular cyclopropanation of an allylic diazoester containing an electronically-unbiased alkene embedded in a 6-oxa-bicyclo[3.2.1]-oct-3-ene skeleton. We obtained exclusively a product arising from 1,2-addition of oxygen and carbon (oxyalkylation) to the alkene. While oxyalkylation products have been reported when electron-rich alkenes (e.g. enol ethers) are employed, examples derived from electronically-unbiased alkenes are rare. Here, we establish that the oxyalkylation is general for a range of 6-oxa-bicyclo[3.2.1]-oct-3-ene substrates and show that these products form competitively in the cyclization of simpler α-diazo β-ketoesters. Our data suggest increasing charge separation in the transition state for the addition promotes the oxyalkylation pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    二氯甲烷,作为一种容易获得且廉价的C1合成子,被建议作为在温和条件下进行烯烃环丙烷化的强大构建块。在这里,我们报告了一个高效和多功能的双光氧化还原系统,涉及镍氨基吡啶配位络合物和光催化剂,对于使用二氯甲烷的芳香族烯烃的环丙烷化,在可见光照射下。环丙烷化方案已成功应用于克规模。机理研究表明,Ni(II)吡啶基自由基络合物是Csp3-Cl键均裂的关键中间体,产生被烯烃偶联配偶体捕获的氯甲基自由基。我们的发现也强调了这种方法的多功能性。通过指导自由基/极性交叉过程,我们能够选择性地推动反应形成环丙基衍生物或相应的非环状烷基氯产物。该方法也成功地应用于双联二氯烷烃,包括螺[2,2]化合物的形成。此外,我们的方法扩展到氘标记的环丙烷的合成,证明其在同位素标记中的实用性,并扩大其在化学合成和药物开发中的适用性。
    Dichloromethane, as a readily available and inexpensive C1 synthon is proposed as a powerful building block for cyclopropanation of alkenes under mild conditions. Herein, we report a highly efficient and versatile dual photoredox system, involving a nickel aminopyridine coordination complex and a photocatalyst, for the cyclopropanation of aromatic olefins using dichloromethane, under visible-light irradiation. The cyclopropanation protocol has been successfully applied at gram scale. Mechanistic studies suggest a Ni(II) pyridyl radical complex as the key intermediate for the homolytic cleavage of the Csp3-Cl bond, generating a chloromethyl radical that is captured by the olefin coupling partner. Our findings also highlight the versatility of this methodology. By directing the radical/polar crossover process, we were able to selectively drive the reaction towards either the formation of cyclopropyl derivatives or the corresponding non-cyclic alkyl chloride products. The methodology also successfully apply to geminal dichloroalkanes, including the formation of spiro[2,2] compounds. Moreover, our methodology extends to the synthesis of deuterium-labelled cyclopropanes, demonstrating its utility in isotopic labelling and broadening its applicability in chemical synthesis and drug development.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    卡宾转移反应已成为合成复杂分子结构的关键方法。血红素蛋白催化的卡宾转移反应在模型化合物上显示出有希望的结果。然而,它们有限的底物范围阻碍了它们在天然产物功能化中的应用。在先前发表的关于碳烯转移酶-肌红蛋白变体的工作的基础上,这项研究采用计算机辅助蛋白质工程来设计肌红蛋白变体,使用对接或基于深度学习的LigandMPNN方法。这些变体用作卡宾转移反应的催化剂,并选择具有C-C双键的单萜底物,导致七个目标产品。这种经济有效的方法拓宽了血红素蛋白催化反应的底物范围,从而为血红素蛋白功能的研究开辟了新的途径,并为生物活性分子的合成提供了新的视角。
    Carbene transfer reactions have emerged as pivotal methodologies for the synthesis of complex molecular architectures. Heme protein-catalyzed carbene transfer reactions have shown promising results on model compounds. However, their limited substrate scope has hindered their application in natural product functionalization. Building upon the foundation of previously published work on a carbene transferase-myoglobin variant, this study employs computer-aided protein engineering to design myoglobin variants, using either docking or the deep learning-based LigandMPNN method. These variants were utilized as catalysts in carbene transfer reactions with a selection of monoterpene substrates featuring C-C double bonds, leading to seven target products. This cost-effective methodology broadens the substrate scope for heme protein-catalyzed reactions, thereby opening novel pathways for research in heme protein functionalities and offering fresh perspectives in the synthesis of bioactive molecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属辅因子配体的设计对于控制金属酶的反应性至关重要。我们研究了由肌球蛋白催化的卡宾转移反应,该肌球蛋白在外周位点含有一个和两个三氟甲基基团的铁卟啉辅因子(分别为FePorCF3和FePor(CF3)2),天然血红素和铁卟啉(FePc)。这四种肌动蛋白在+147mV的蛋白质中显示出宽范围的Fe(II)/Fe(III)氧化还原电位,+87mV,+42mV和-198mVvsNHE,分别。用FePor(CF3)2重构的肌红蛋白具有更正的电势,其增强了卡宾中间体与烯烃的反应性,并且表现出惰性烯烃如脂族和内烯烃的优异的环丙烷化。相比之下,用FePc重建的工程肌红蛋白具有更负的氧化还原电位,其加速中间体的形成,但对惰性烯烃具有低反应性。机理研究表明,肌红蛋白与FePor(CF3)2会产生无法检测到的具有自由基特性的活性中间体。相比之下,由肌红蛋白与FePc催化的该反应包括可检测到的具有亲电子特性的铁-卡宾物质。这一发现强调了以氧化还原为中心的铁卟啉类辅助因子在血蛋白中的设计对调节卡宾转移反应的反应性的重要性。
    Design of metal cofactor ligands is essential for controlling the reactivity of metalloenzymes. We investigated a carbene transfer reaction catalyzed by myoglobins containing iron porphyrin cofactors with one and two trifluoromethyl groups at peripheral sites (FePorCF3 and FePor(CF3)2, respectively), native heme and iron porphycene (FePc). These four myoglobins show a wide range of Fe(II)/Fe(III) redox potentials in the protein of +147 mV, +87 mV, +42 mV and -198 mV vs. NHE, respectively. Myoglobin reconstituted with FePor(CF3)2 has a more positive potential, which enhances the reactivity of a carbene intermediate with alkenes, and demonstrates superior cyclopropanation of inert alkenes, such as aliphatic and internal alkenes. In contrast, engineered myoglobin reconstituted with FePc has a more negative redox potential, which accelerates the formation of the intermediate, but has low reactivity for inert alkenes. Mechanistic studies indicate that myoglobin with FePor(CF3)2 generates an undetectable active intermediate with a radical character. In contrast, this reaction catalyzed by myoglobin with FePc includes a detectable iron-carbene species with electrophilic character. This finding highlights the importance of redox-focused design of the iron porphyrinoid cofactor in hemoproteins to tune the reactivity of the carbene transfer reaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    研究了活性亚甲基衍生物的分子内环丙烷化的自由基-极性交叉反应。在FeCl3作为化学计量氧化剂和K2HPO4作为碱的存在下,活性亚甲基的脱氢环丙烷化通过FeCl3促进的氧化自由基环化,然后进行离子环化,得到双环环丙烷。使用α-氯活性亚甲基导致亚催化环丙烷化,涉及两种氧化还原途径。在K2HPO4存在下,通过使用FeCl2(20mol%)与配体(20mol%)的组合进行氧化还原环丙烷化。
    Radical-polar crossover reactions were studied for the intramolecular cyclopropanation of active methylene derivatives. In the presence of FeCl3 as a stoichiometric oxidant and K2HPO4 as a base, the dehydrogenative cyclopropanation of active methylenes proceeded through the FeCl3-promoted oxidative radical cyclization followed by the ionic cyclization to give the bicyclic cyclopropanes. The use of α-chloro-active methylenes leads the subcatalytic cyclopropanation involving two redox pathways. In the presence of K2HPO4, the redox cyclopropanation proceeded by using FeCl2 (20 mol%) in combination with ligand (20 mol%).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自从FriedrichWöhler在1828年开创性地合成尿素以来,在过去的两个世纪中,有机合成主要依赖于对植根于双电子异解离子化学的化学反应的探索和利用。虽然单电子均裂自由基化学既具有丰富的基本反应性,又具有实用优势,自由基反应的合成应用长期以来一直受到与控制高能自由基中间体的反应性和选择性相关的巨大挑战的阻碍。为了充分利用自由基化学在有机合成中尚未开发的潜力,迫切需要制定截然不同的概念和广泛适用的战略来解决这些悬而未决的问题。为了实现这个目标,研究人员一直在积极开发金属自由基催化(MRC)作为一个全面的框架,以指导设计用于控制均裂自由基反应的过度反应性和立体选择性的一般方法。本质上,MRC利用存在于开壳金属络合物中的以金属为中心的自由基作为单电子催化剂,用于底物的均裂活化,以产生金属缠结的有机自由基,作为控制反应途径和后续催化自由基过程的立体化学过程的关键中间体。不同于传统的过渡金属配合物的双电子催化,MRC通过使用逐步自由基机制的单电子化学进行操作。
    Since Friedrich Wöhler\'s groundbreaking synthesis of urea in 1828, organic synthesis over the past two centuries has predominantly relied on the exploration and utilization of chemical reactions rooted in two-electron heterolytic ionic chemistry. While one-electron homolytic radical chemistry is both rich in fundamental reactivities and attractive with practical advantages, the synthetic application of radical reactions has been long hampered by the formidable challenges associated with the control over reactivity and selectivity of high-energy radical intermediates. To fully harness the untapped potential of radical chemistry for organic synthesis, there is a pressing need to formulate radically different concepts and broadly applicable strategies to address these outstanding issues. In pursuit of this objective, researchers have been actively developing metalloradical catalysis (MRC) as a comprehensive framework to guide the design of general approaches for controlling over reactivity and stereoselectivity of homolytic radical reactions. Essentially, MRC exploits the metal-centered radicals present in open-shell metal complexes as one-electron catalysts for homolytic activation of substrates to generate metal-entangled organic radicals as the key intermediates to govern the reaction pathway and stereochemical course of subsequent catalytic radical processes. Different from the conventional two-electron catalysis by transition metal complexes, MRC operates through one-electron chemistry utilizing stepwise radical mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Review
    来自植物和微生物的天然产物提供了有价值的药物化合物储库。C-C键的形成和断裂是天然产物生物合成过程中的关键事件,在产生对生物功能至关重要的多样化和复杂的化学结构方面发挥着关键作用。这篇综述总结了我们关于在天然产物生物合成过程中催化非常规C-C键形成和裂解反应的生物合成酶的最新发现。
    Natural products from plants and microorganisms provide a valuable reservoir of pharmaceutical compounds. C-C bond formation and cleavage are crucial events during natural product biosynthesis, playing pivotal roles in generating diverse and intricate chemical structures that are essential for biological functions. This review summarizes our recent findings regarding biosynthetic enzymes that catalyze unconventional C-C bond formation and cleavage reactions during natural product biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    环丙基在药物化学中非常重要,因为它可以被用来影响药物分子中的一系列药物特性。该报告描述了使用二氯甲烷(CH2Cl2)作为亚甲基源的维生素B12光催化方法,用于缺电子烯烃的环丙烷化。该反应在温和条件下以良好至优异的产率进行,具有优异的官能团相容性,并且具有高度的化学选择性。范围还可以扩展到从CD2Cl2和1,1-二氯乙烷开始制备D2-环丙基和甲基取代的环丙基加合物,分别。
    The cyclopropyl group is of great importance in medicinal chemistry, as it can be leveraged to influence a range of pharmaceutical properties in drug molecules. This report describes a Vitamin B12 -photocatalyzed approach for the cyclopropanation of electron-deficient alkenes using dichloromethane (CH2 Cl2 ) as the methylene source. The reaction proceeds in good to excellent yields under mild conditions, has excellent functional group compatibility, and is highly chemoselective. The scope could also be extended to the preparation of D2 -cyclopropyl and methyl-substituted cyclopropyl adducts starting from CD2 Cl2 and 1,1-dichloroethane, respectively.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞色素P450的蛋白质工程使这些生物催化剂能够促进自然界以外的各种非生物反应。将此类非天然转化与微生物生物合成途径整合可以允许修饰的天然产物衍生物的可持续酶促生产。特别是,三氟甲基化是药物研究中非常理想的修饰,由于三氟甲基对药物效力的积极影响,生物利用度,和代谢稳定性。这项研究证明了使用工程细胞色素P450变体的天然单萜支架的非天然三氟甲基取代的环丙烷衍生物的生物合成,P411-PFA.P411-PFA成功催化了三氟甲基卡宾从2-重氮-1,1,1-三氟乙烷转移到几种单萜的末端烯烃,包括L-carveol,Carvone,紫苏酒精,还有Perillartine,生成相应的三氟甲基化环丙烷产品。此外,将这种非生物环丙烷化反应与大肠杆菌中L-carveol生产的重建代谢途径相结合,可以一步生物合成柠檬烯前体的三氟甲基化L-carveol衍生物。总的来说,将合成酶化学与已建立的代谢途径合并代表了可持续生产生物活性天然产物类似物的有希望的方法。
    Protein engineering of cytochrome P450s has enabled these biocatalysts to promote a variety of abiotic reactions beyond nature\'s repertoire. Integrating such non-natural transformations with microbial biosynthetic pathways could allow sustainable enzymatic production of modified natural product derivatives. In particular, trifluoromethylation is a highly desirable modification in pharmaceutical research due to the positive effects of the trifluoromethyl group on drug potency, bioavailability, and metabolic stability. This study demonstrates the biosynthesis of non-natural trifluoromethyl-substituted cyclopropane derivatives of natural monoterpene scaffolds using an engineered cytochrome P450 variant, P411-PFA. P411-PFA successfully catalyzed the transfer of a trifluoromethyl carbene from 2-diazo-1,1,1-trifluoroethane to the terminal alkenes of several monoterpenes, including L-carveol, carvone, perilla alcohol, and perillartine, to generate the corresponding trifluoromethylated cyclopropane products. Furthermore, integration of this abiotic cyclopropanation reaction with a reconstructed metabolic pathway for L-carveol production in Escherichia coli enabled one-step biosynthesis of a trifluoromethylated L-carveol derivative from limonene precursor. Overall, amalgamating synthetic enzymatic chemistry with established metabolic pathways represents a promising approach to sustainably produce bioactive natural product analogs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号