crystal structure

晶体结构
  • 文章类型: Journal Article
    由咪唑基药物形成的三种多组分晶体的结构,即甲硝唑,酮康唑和咪康唑,结合三硫氰酸进行表征。获得的每个加合物代表不同类别的结晶分子形式:共晶,盐和盐的共晶。结构分析表明,在所有情况下,N-H..N氢键负责酸-碱对的形成,不管质子转移是否发生,这些分子对通过中心对称N-H结合形成独特的超分子基序。..酸分子之间的相互作用。从几何和能量的角度讨论了以特征模式作用的复杂分子间力,涉及Hirshfeld曲面分析,成对能量估计,和自然键轨道计算。
    The structures of three multicomponent crystals formed with imidazole-based drugs, namely metronidazole, ketoconazole and miconazole, in conjunction with trithiocyanuric acid are characterized. Each of the obtained adducts represents a different category of crystalline molecular forms: a cocrystal, a salt and a cocrystal of salt. The structural analysis revealed that in all cases, the N-H...N hydrogen bond is responsible for the formation of acid-base pairs, regardless of whether proton transfer occurs or not, and these molecular pairs are combined to form unique supramolecular motifs by centrosymmetric N-H...S interactions between acid molecules. The complex intermolecular forces acting in characteristic patterns are discussed from the geometric and energetic perspectives, involving Hirshfeld surface analysis, pairwise energy estimation, and natural bond orbital calculations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人脂肪酸合成酶(hFASN)产生用于细胞膜构建的脂肪酸,储能,生物分子修饰和信号转导。hFASN的异常表达和功能与许多人类疾病如肥胖高度相关,糖尿病,和癌症,因此,它被认为是一个有价值的潜在药物靶标。到目前为止,大多数hFASN酶模块的结构和催化机理已被广泛研究,除了关键脱水酶模块(hDH)。在这里,我们介绍了hDH的酶学表征和高分辨率晶体结构。我们证明了hDH优先催化长度在4到8个碳之间的酰基底物,并且在更长的底物上表现出低得多的酶活性。随后的结构研究表明,hDH表现出假二聚组织,具有单个L形复合疏水催化隧道以及附近的非典型ACP结合位点,表明与鉴定的常规细菌脂肪酸脱水酶相比,hDH实现了不同的底物识别和脱水机制。我们的发现为理解hFASN的生物学和致病功能奠定了基础。并且可以促进针对hFASN功能异常的疾病的治疗药物开发。
    The human fatty acid synthase (hFASN) produces fatty acids for cellar membrane construction, energy storage, biomolecule modifications and signal transduction. Abnormal expression and functions of hFASN highly associate with numerous human diseases such as obesity, diabetes, and cancers, and thereby it has been considered as a valuable potential drug target. So far, the structural and catalytic mechanisms of most of the hFASN enzymatic modules have been extensively studied, except the key dehydratase module (hDH). Here we presented the enzymatic characterization and the high-resolution crystal structure of hDH. We demonstrated that the hDH preferentially catalyzes the acyl substrates with short lengths between 4 to 8-carbons, and exhibits much lower enzymatic activity on longer substrates. Subsequent structural study showed that hDH displays a pseudo-dimeric organization with a single L-shaped composite hydrophobic catalytic tunnel as well as an atypical ACP binding site nearby, indicating that hDH achieves distinct substrate recognition and dehydration mechanisms compared to the conventional bacterial fatty acid dehydratases identified. Our findings laid the foundation for understanding the biological and pathogenic functions of hFASN, and may facilitate therapeutical drug development against diseases with abnormal functionality of hFASN.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    葡萄糖-果糖氧化还原酶/肌醇脱氢酶/根佐平分解代谢蛋白(Gfo/Idh/MocA)家族包括多种具有广泛底物的氧化还原酶,其利用NAD或NADP作为氧化还原辅因子。人类包含这个家族的两个成员,即含有葡萄糖-果糖氧化还原酶结构域的蛋白1和2(GFOD1和GFOD2)。虽然GFOD1表现出较低的组织特异性,它特别在大脑中表达,可能与精神疾病和严重疾病有关。然而,具体功能,辅因子偏好,和GFOD1的酶活性仍然很大程度上未知。在这项工作中,我们发现GFOD1不与NAD或NADP结合。晶体结构分析揭示了GFOD1作为类似于其他家族成员的典型同源二聚体存在,但缺乏辅因子结合所需的必需残基,这表明它可能是一种假酶.蛋白质组数据库中GFOD1相互作用伴侣的探索将NK-κB抑制剂相互作用的Ras样2(NKIRAS2)鉴定为一个潜在的候选物。免疫共沉淀(co-IP)分析表明,GFOD1与GTP和GDP结合形式的NKIRAS2相互作用。使用点突变体在细胞中验证了GFOD1-NKIRAS2复合物的预测结构模型,并表明GFOD1选择性识别NKIRAS2的开关间区域。这些发现揭示了GFOD1的独特结构特性,并阐明了其在细胞过程中的潜在功能作用。
    The glucose-fructose oxidoreductase/inositol dehydrogenase/rhizopine catabolism protein (Gfo/Idh/MocA) family includes a variety of oxidoreductases with a wide range of substrates that utilize NAD or NADP as redox cofactor. Human contains two members of this family, namely glucose-fructose oxidoreductase domain-containing protein 1 and 2 (GFOD1 and GFOD2). While GFOD1 exhibits low tissue specificity, it is notably expressed in the brain, potentially linked to psychiatric disorders and severe diseases. Nevertheless, the specific function, cofactor preference, and enzymatic activity of GFOD1 remain largely unknown. In this work, we find that GFOD1 does not bind to either NAD or NADP. Crystal structure analysis unveils that GFOD1 exists as a typical homodimer resembling other family members, but lacks essential residues required for cofactor binding, suggesting that it may function as a pseudoenzyme. Exploration of GFOD1-interacting partners in proteomic database identifies NK-κB inhibitor-interacting Ras-like 2 (NKIRAS2) as one potential candidate. Co-immunoprecipitation (co-IP) analysis indicates that GFOD1 interacts with both GTP- and GDP-bound forms of NKIRAS2. The predicted structural model of the GFOD1-NKIRAS2 complex is validated in cells using point mutants and shows that GFOD1 selectively recognizes the interswitch region of NKIRAS2. These findings reveal the distinct structural properties of GFOD1 and shed light on its potential functional role in cellular processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    硝基还原酶(NRs)是NAD(P)H依赖性黄素酶,其通过亚硝基和羟胺中间体将硝基芳族化合物还原为其相应的芳基胺。由于其广泛的底物范围和多功能性,NRs已在多个领域找到应用,如生物催化,生物修复,细胞成像和前药激活。然而,只有有限数量的广泛NR超家族成员(>24000序列)已经被实验表征。在这组酶中,只有少数人能够合成胺,这是制药的基本化学转变,农业,和纺织工业。在这里,我们提供了一个全面的描述最近发现的从芽孢杆菌的NR,名为BtNR。这种酶先前已被证明具有将硝基芳族和杂环化合物完全转化为它们各自的伯胺的能力。在这项研究中,我们确定了它的生化,动力学和结构特性,包括其59°C的表观熔化温度(Tm),与其他众所周知的NRs相比,宽的pH活性范围(从pH3到10)和显着低的氧化还原电位(-236±1mV)。我们还确定了其稳态和预稳态动力学参数,这与其他NR是一致的。此外,我们阐明了BtNR的晶体结构,类似于特征明确的大肠杆菌氧不敏感的NAD(P)H硝基还原酶(NfsB),并通过与四种硝基芳族底物的对接和分子动力学研究,研究了其活性位点的底物结合。在这些结构分析的指导下,我们通过定点诱变研究了活性位点残基的功能作用。我们的发现为BtNR的生化和结构特性提供了有价值的见解,以及它在生物技术中的潜在应用。
    Nitroreductases (NRs) are NAD(P)H-dependent flavoenzymes that reduce nitro aromatic compounds to their corresponding arylamines via the nitroso and hydroxylamine intermediates. Because of their broad substrate scope and versatility, NRs have found application in multiple fields such as biocatalysis, bioremediation, cell-imaging and prodrug activation. However, only a limited number of members of the broad NR superfamily (> 24 000 sequences) have been experimentally characterized. Within this group of enzymes, only few are capable of amine synthesis, which is a fundamental chemical transformation for the pharmaceutical, agricultural, and textile industries. Herein, we provide a comprehensive description of a recently discovered NR from Bacillus tequilensis, named BtNR. This enzyme has previously been demonstrated to have the capability to fully convert nitro aromatic and heterocyclic compounds to their respective primary amines. In this study, we determined its biochemical, kinetic and structural properties, including its apparent melting temperature (Tm) of 59 °C, broad pH activity range (from pH 3 to 10) and a notably low redox potential (-236 ± 1 mV) in comparison to other well-known NRs. We also determined its steady-state and pre-steady-state kinetic parameters, which are consistent with other NRs. Additionally, we elucidated the crystal structure of BtNR, which resembles the well-characterized Escherichia coli oxygen-insensitive NAD(P)H nitroreductase (NfsB), and investigated the substrate binding in its active site through docking and molecular dynamics studies with four nitro aromatic substrates. Guided by these structural analyses, we probed the functional roles of active site residues by site-directed mutagenesis. Our findings provide valuable insights into the biochemical and structural properties of BtNR, as well as its potential applications in biotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    阿片类药物使用障碍(OUD)和过量是不断发展的公共卫生威胁,在美国和国外的发病率和患病率持续增长。目前的治疗包括阿片受体激动剂和拮抗剂,这是安全和有效的,但仍然受到一些限制。鼠和人源化单克隆抗体(mAb)已成为逆转和预防阿片类药物诱导的呼吸抑制的替代和补充策略。探索超越传统重链-轻链mAb的抗体应用,我们从骆驼科动物可变重链(VHH)结构域噬菌体展示文库中鉴定出一种对芬太尼特异的新型单域抗体,并进行了生物物理鉴定.结构数据表明,VHH与芬太尼的结合是由独特的结构域交换二聚化机制促进的。它伴随着互补决定区(CDR)环的重排,导致芬太尼结合袋的形成。结构指导的诱变进一步鉴定了氨基酸取代,其提高了亲和力并放宽了在芬太尼结合中VHH的二聚化要求。我们的研究证明了阿片类药物的VHH参与,并告知如何进一步设计VHH以增强稳定性和功效,为探索基于VHH的生物制剂对抗OUD和过量用药的体内应用奠定基础。
    Opioid use disorders (OUD) and overdoses are ever-evolving public health threats that continue to grow in incidence and prevalence in the United States and abroad. Current treatments consist of opioid receptor agonists and antagonists, which are safe and effective but still suffer from some limitations. Murine and humanized monoclonal antibodies (mAb) have emerged as an alternative and complementary strategy to reverse and prevent opioid-induced respiratory depression. To explore antibody applications beyond traditional heavy-light chain mAbs, we identified and biophysically characterized a novel single-domain antibody specific for fentanyl from a camelid variable-heavy-heavy (VHH) domain phage display library. Structural data suggested that VHH binding to fentanyl was facilitated by a unique domain-swapped dimerization mechanism, which accompanied a rearrangement of complementarity-determining region (CDR) loops leading to the formation of a fentanyl-binding pocket. Structure-guided mutagenesis further identified an amino acid substitution that improved the affinity and relaxed the requirement for dimerization of the VHH in fentanyl binding. Our studies demonstrate VHH engagement of an opioid and inform on how to further engineer a VHH for enhanced stability and efficacy, laying the groundwork for exploring the in vivo applications of VHH-based biologics against OUD and overdose.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在细菌中,肽基-tRNA水解酶(Pth,E.C.3.1.1.29)是一种普遍存在的必需酶,用于防止肽基-tRNA的积累和tRNA的螯合。Pth是切割肽和tRNA之间的酯键的酯酶。这里,我们显示了屎肠球菌(EfPth)的Pth的晶体结构,分辨率为1.92µ。不对称单元中的两个分子在N66的侧链方向上不同,N66是催化位点的保守残基。通过EFPth对底物α-N-BODIPY-赖氨酰-tRNALys(BLT)的酶水解,其特征在于Michaelis-Menten参数KM163.5nM和Vmax1.9nM/s。测试了具有吡咯烷酮支架的化合物对Pth和一种化合物的抑制作用,1040-C,发现IC50为180nM。对1040-C进行抗菌活性分析。它对药物敏感和耐药的金黄色葡萄球菌(MRSA和VRSA)和肠球菌(VSE和VRE)表现出等效活性,MIC为2-8μg/mL。1040-C与庆大霉素协同作用,并且该组合对庆大霉素抗性金黄色葡萄球菌菌株NRS-119有效。发现1040-C将金黄色葡萄球菌的生物膜质量降低至与万古霉素相似的程度。在鼠感染模型中,1040-C能够将细菌负荷降低至与万古霉素相当的程度。
    In bacteria, peptidyl-tRNA hydrolase (Pth, E.C. 3.1.1.29) is a ubiquitous and essential enzyme for preventing the accumulation of peptidyl-tRNA and sequestration of tRNA. Pth is an esterase that cleaves the ester bond between peptide and tRNA. Here, we present the crystal structure of Pth from Enterococcus faecium (EfPth) at a resolution of 1.92 Å. The two molecules in the asymmetric unit differ in the orientation of sidechain of N66, a conserved residue of the catalytic site. Enzymatic hydrolysis of substrate α-N-BODIPY-lysyl-tRNALys (BLT) by EfPth was characterized by Michaelis-Menten parameters KM 163.5 nM and Vmax 1.9 nM/s. Compounds having pyrrolinone scaffold were tested for inhibition of Pth and one compound, 1040-C, was found to have IC50 of 180 nM. Antimicrobial activity profiling was done for 1040-C. It exhibited equipotent activity against drug-susceptible and resistant S. aureus (MRSA and VRSA) and Enterococcus (VSE and VRE) with MICs 2-8 μg/mL. 1040-C synergized with gentamicin and the combination was effective against the gentamicin resistant S. aureus strain NRS-119. 1040-C was found to reduce biofilm mass of S. aureus to an extent similar to Vancomycin. In a murine model of infection, 1040-C was able to reduce bacterial load to an extent comparable to Vancomycin.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MltG,位于细菌的内膜内,作为通过切割新合成的聚糖链整合到细胞壁中所必需的裂解转糖基转移酶(LT),强调其在细菌细胞壁生物合成和重塑中的关键参与。目前的研究报道了LT的MltG家族的第一个结构。我们已经阐明了鲍曼不动杆菌(abMltG)的MltG的结构,一种强大的超级细菌,以其显著的抗生素抗性而闻名。我们的结构和生化研究揭示了MltG家族中存在柔性肽聚糖(PG)结合域(PGD),以单体形式存在于溶液中。此外,我们通过结构分析和序列比较相结合的方法描绘了abMltG的推定活性位点.这一发现增强了我们对MltG家族介导的转糖基化过程的理解,提供见解,可以为开发针对鲍曼不动杆菌的新型抗生素提供信息。
    MltG, positioned within the inner membrane of bacteria, functions as a lytic transglycosylase (LT) essential for integrating into the cell wall by cleaving the newly synthesized glycan strand, emphasizing its critical involvement in bacterial cell wall biosynthesis and remodeling. Current study reported the first structure of MltG family of LT. We have elucidated the structure of MltG from Acinetobacter baumannii (abMltG), a formidable superbug renowned for its remarkable antibiotic resistance. Our structural and biochemical investigations unveiled the presence of a flexible peptidoglycan (PG)-binding domain (PGD) within MltG family, which exists as a monomer in solution. Furthermore, we delineated the putative active site of abMltG via a combination of structural analysis and sequence comparison. This discovery enhances our comprehension of the transglycosylation process mediated by the MltG family, offering insights that could inform the development of novel antibiotics tailored to combat A. baumannii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    VWA结构域通常作为多蛋白复合物的关键成分发挥作用,促进蛋白质-蛋白质相互作用。然而,有限的研究集中在植物中VWA蛋白的系统研究上。这里,我们在拟南芥中鉴定了28个VWA蛋白基因,分为三个分支,具有一个串联重复事件和四个共线性块内的旁系同源基因。然后,我们通过转录组学分析确定了它们在非生物胁迫下的表达模式。发现所有五个RGLG基因都对至少一种非生物胁迫有反应,RGLG5被鉴定为多重应激反应基因,编码具有VWA结构域和C末端RING结构域的E3泛素连接酶。随后,我们通过确定其VWA结构域的晶体结构来探索RGLG5的耐受功能。结构比较揭示了RGLG5-VWA的变构调节机制,其中α7的偏转导致MIDAS基序内关键残基结合金属离子的移位。我们的发现提供了关于VWA蛋白的全面知识,并从晶体结构方面对RGLG5-VWA的耐受功能进行了深入的研究。
    The VWA domain commonly functions as a crucial component of multiprotein complexes, facilitating protein-protein interactions. However, limited studies have focused on the systemic study of VWA proteins in plants. Here, we identified 28 VWA protein genes in Arabidopsis thaliana, categorized into three clades, with one tandem duplication event and four paralogous genes within collinearity blocks. Then, we determined their expression patterns under abiotic stresses by transcriptomic analysis. All five RGLG genes were found to be responsive to at least one kind of abiotic stress, and RGLG5 was identified as a multiple stress-responsive gene, coding an E3 ubiquitin ligase with a VWA domain and a C-terminal RING domain. Subsequently, we explored tolerant function of RGLG5 by determining the crystal structure of its VWA domain. The structural comparison revealed the allosteric regulation mechanism of RGLG5-VWA, wherein the deflection of α7 led to displacement of key residue binding metal ion within MIDAS motif. Our findings provide full-scale knowledge on VWA proteins, and insights into tolerant function of RGLG5-VWA in terms of crystal structure.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自由基S-腺苷-L-甲硫氨酸(SAM)酶将SAM的还原裂解与自由基介导的转化偶联,这些转化已被证明范围相当广泛。DesII是来自TDP-脱糖胺生物合成途径的一种这样的酶,其中它催化自由基介导的脱氨基作用。先前的研究表明,该反应是通过从α-羟烷基或其共轭碱中直接消除氨而进行的(即,酮基)而不是氨基的1,2-迁移以形成甲醇胺自由基中间体。然而,没有晶体结构,负责这种化学物质的活性位点特征在很大程度上仍然未知。本文所述的晶体学研究通过提供DesII活性位点的结构描述来帮助填补这一空白。基于溶解的晶体结构的计算分析与直接消除是一致的,并且表明活性位点谷氨酸残基可能充当促进α-羟烷基自由基中间体的去质子化和氨基团的消除的一般碱。
    Radical S-adenosyl-L-methionine (SAM) enzymes couple the reductive cleavage of SAM to radical-mediated transformations that have proven to be quite broad in scope. DesII is one such enzyme from the biosynthetic pathway of TDP-desosamine where it catalyzes a radical-mediated deamination. Previous studies have suggested that this reaction proceeds via direct elimination of ammonia from an α-hydroxyalkyl radical or its conjugate base (i.e., a ketyl radical) rather than 1,2-migration of the amino group to form a carbinolamine radical intermediate. However, without a crystal structure, the active site features responsible for this chemistry have remained largely unknown. The crystallographic studies described herein help to fill this gap by providing a structural description of the DesII active site. Computational analyses based on the solved crystal structure are consistent with direct elimination and indicate that an active site glutamate residue likely serves as a general base to promote deprotonation of the α-hydroxyalkyl radical intermediate and elimination of the ammonia group.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    萜烯合酶(TS)的结构生物学研究为了解其在生产具有多环系统和多个手性中心的多种萜烯产物中的催化机理提供了有用的基础。然而,与迄今为止发现的>95,000种萜类化合物相比,TS的结构很少得到解决,对其催化机理的理解滞后。我们在这里(I)介绍基本的催化逻辑,结构架构,和TS的金属结合保守基序;(Ii)提供详细的实验程序,在基因克隆和质粒构建中,蛋白质纯化,结晶,X射线衍射数据收集和结构阐明,用于TSs的结构生物学研究;(iii)讨论基于结构的工程和TSs的从头设计在产生有价值的萜烯分子方面的前景,这是化学合成无法轻易实现的。
    Structural biology research of terpene synthases (TSs) has provided a useful basis to understand their catalytic mechanisms in producing diverse terpene products with polycyclic ring systems and multiple chiral centers. However, compared to the large numbers of>95,000 terpenoids discovered to date, few structures of TSs have been solved and the understanding of their catalytic mechanisms is lagging. We here (i) introduce the basic catalytic logic, the structural architectures, and the metal-binding conserved motifs of TSs; (ii) provide detailed experimental procedures, in gene cloning and plasmid construction, protein purification, crystallization, X-ray diffraction data collection and structural elucidation, for structural biology research of TSs; and (iii) discuss the prospects of structure-based engineering and de novo design of TSs in generating valuable terpene molecules, which cannot be easily achieved by chemical synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号