convergent extension

Convergent extension
  • 文章类型: Journal Article
    上皮细胞之间的粘附使上皮组织在形态发生过程中具有显着的机械行为。然而,目前尚不清楚细胞间粘附如何影响静态和动态流动的融合上皮组织的力学。这里,我们系统地调节果蝇胚胎中E-cadherin介导的粘附,并研究在与体轴伸长相关的剧烈组织重塑和流动之前和期间对胚带上皮力学行为的影响。在轴伸长之前,我们发现,增加E-cadherin水平会产生包含更多细长细胞的组织,并预测会更像流体,提供减少的组织流动阻力。在轴伸长期间,我们发现E-cadherin的主要作用是调节细胞通过重排事件进行的速度。在轴伸长之前和期间,E-钙粘蛋白水平影响肌动球蛋白依赖力的模式,支持E-cadherin部分通过对肌动球蛋白的影响来调节组织力学的观点。值得注意的是,E-cadherin水平的4倍变化对整体组织结构和血流的影响相对较弱,这表明该系统对在形成完整组织的该范围内的绝对E-cadherin水平的变化具有耐受性。一起来看,这些发现揭示了E-cadherin介导的粘附在体内控制组织结构和动力学方面的双重作用,有时是相反的作用。这导致融合组织中粘连和流动之间的意外关系。
    Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脉冲收缩动力学如何驱动上皮片中细胞和组织拓扑的重塑一直是发育和疾病的关键问题。由于成像和分析技术的限制,描述了细胞和邻居关系变化的体内机制的研究很大程度上仅限于平面顶端区域的分析。因此,上皮细胞的体积性质如何影响三维细胞表面的力传播和重塑,尤其包括根尖-基轴,不清楚。这里,我们执行晶格光片显微镜(LLSM)为基础的分析,以确定多远和快速的力传播跨不同的根尖基底层,以及从柱状上皮开始的拓扑变化。这些数据集具有高度的时间和深度分辨率,并揭示了拓扑变化力在空间上纠缠,以脉冲方式在观察到的根尖-基轴上产生收缩力,而细胞体积的守恒限制了瞬时细胞变形。领导层行为在有利的阶段性条件下机会主义地发生,随着新的收缩脉冲推动细胞拓扑结构的进一步变化,滞后层“拉链”可以赶上。这些结果与拓扑起始的特定区域相反,并证明了基于4D的系统分析对于理解细胞尺寸中的力和变形如何在三维环境中传播的重要性。
    How pulsed contractile dynamics drive the remodeling of cell and tissue topologies in epithelial sheets has been a key question in development and disease. Due to constraints in imaging and analysis technologies, studies that have described the in vivo mechanisms underlying changes in cell and neighbor relationships have largely been confined to analyses of planar apical regions. Thus, how the volumetric nature of epithelial cells affects force propagation and remodeling of the cell surface in three dimensions, including especially the apical-basal axis, is unclear. Here, we perform lattice light sheet microscopy (LLSM)-based analysis to determine how far and fast forces propagate across different apical-basal layers, as well as where topological changes initiate from in a columnar epithelium. These datasets are highly time- and depth-resolved and reveal that topology-changing forces are spatially entangled, with contractile force generation occurring across the observed apical-basal axis in a pulsed fashion, while the conservation of cell volumes constrains instantaneous cell deformations. Leading layer behaviors occur opportunistically in response to favorable phasic conditions, with lagging layers \"zippering\" to catch up as new contractile pulses propel further changes in cell topologies. These results argue against specific zones of topological initiation and demonstrate the importance of systematic 4D-based analysis in understanding how forces and deformations in cell dimensions propagate in a three-dimensional environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    几何标准可用于评估在组织的会聚延伸期间细胞嵌入是主动的还是被动的。
    Geometric criteria can be used to assess whether cell intercalation is active or passive during the convergent extension of tissue.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    平面极性是一种通常观察到的现象,其中蛋白质在其跨组织平面的亚细胞定位或活性中表现出一致的不对称性。在动物发育过程中,平面极性是协调细胞群行为以实现各向异性组织重塑的基本机制,增长,和组织。因此,发育生物学研究的主要重点是了解各种系统中平面极性的分子机制,以确定组织组织的保守原则。在果蝇早期胚胎中,胚带神经外胚层上皮通过一个称为会聚延伸(CE)的过程,沿着前后轴的长度迅速加倍;它也通过形成隔室边界(CB)而被细分为串联组织隔室。这两个过程都取决于参与细胞张力和粘附的蛋白质的平面极性。在特定的细胞-细胞接触处富集基于肌动球蛋白的张力和基于粘附连接的粘附是协调的细胞嵌入所必需的,驱动CE,并在CB处产生高度稳定的细胞-细胞接触。最近的研究揭示了一种由富含亮氨酸重复序列(LRR)细胞表面蛋白以条纹模式表达触发的快速细胞极化系统。特别是,Toll-2,Toll-6,Toll-8和Tartan的非均匀表达会产生局部细胞不对称性,从而使细胞能够区分平行或垂直于前后轴的细胞-细胞接触。在这次审查中,我们讨论了(1)CE和CB形成的生物力学基础,(2)前-后图案的初始对称破坏事件如何在平面极性中达到顶峰,和(3)在理解导致平面极化张力和连接粘附的LRR受体下游分子机制方面的最新进展。
    Planar polarity is a commonly observed phenomenon in which proteins display a consistent asymmetry in their subcellular localization or activity across the plane of a tissue. During animal development, planar polarity is a fundamental mechanism for coordinating the behaviors of groups of cells to achieve anisotropic tissue remodeling, growth, and organization. Therefore, a primary focus of developmental biology research has been to understand the molecular mechanisms underlying planar polarity in a variety of systems to identify conserved principles of tissue organization. In the early Drosophila embryo, the germband neuroectoderm epithelium rapidly doubles in length along the anterior-posterior axis through a process known as convergent extension (CE); it also becomes subdivided into tandem tissue compartments through the formation of compartment boundaries (CBs). Both processes are dependent on the planar polarity of proteins involved in cellular tension and adhesion. The enrichment of actomyosin-based tension and adherens junction-based adhesion at specific cell-cell contacts is required for coordinated cell intercalation, which drives CE, and the creation of highly stable cell-cell contacts at CBs. Recent studies have revealed a system for rapid cellular polarization triggered by the expression of leucine-rich-repeat (LRR) cell-surface proteins in striped patterns. In particular, the non-uniform expression of Toll-2, Toll-6, Toll-8, and Tartan generates local cellular asymmetries that allow cells to distinguish between cell-cell contacts oriented parallel or perpendicular to the anterior-posterior axis. In this review, we discuss (1) the biomechanical underpinnings of CE and CB formation, (2) how the initial symmetry-breaking events of anterior-posterior patterning culminate in planar polarity, and (3) recent advances in understanding the molecular mechanisms downstream of LRR receptors that lead to planar polarized tension and junctional adhesion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Preprint
    脊椎动物身体计划的前后(AP)伸长是由中胚层和神经外胚层的会聚和延伸(C&E)胃内形成运动驱动的,但是C&E的分子调节在组织之间如何或是否有所不同仍然是一个悬而未决的问题。使用斑马鱼外植体模型的AP轴延伸,我们表明神经外胚层和中胚层的C&E可以离体分离,个体组织的形态发生是由不同的形态发生信号动力学引起的。使用BMP和节点信号的精确时间操作,我们确定了一个关键的发育窗口,在此期间,高或低BMP/Nodal比率诱导神经外胚层或中胚层驱动的C&E,分别。增加的BMP活性类似地增强C&E,特别是在完整的斑马鱼胃的外胚层,强调我们的研究结果在体内的相关性。一起,这些结果表明,BMP和Nodal形态发生素信号的时间动力学激活了不同的形态发生程序,从而控制了单个组织内的C&E原肠胚形成运动。
    结论:使用斑马鱼胚胎和外植体模型,我们证明,在脊椎动物身体计划形成过程中,形态发生素信号比率的时间动力学可区分组织特异性形态发生程序。
    Anteroposterior (AP) elongation of the vertebrate body plan is driven by convergence and extension (C&E) gastrulation movements in both the mesoderm and neuroectoderm, but how or whether molecular regulation of C&E differs between tissues remains an open question. Using a zebrafish explant model of AP axis extension, we show that C&E of the neuroectoderm and mesoderm can be uncoupled ex vivo, and that morphogenesis of individual tissues results from distinct morphogen signaling dynamics. Using precise temporal manipulation of BMP and Nodal signaling, we identify a critical developmental window during which high or low BMP/Nodal ratios induce neuroectoderm- or mesoderm-driven C&E, respectively. Increased BMP activity similarly enhances C&E specifically in the ectoderm of intact zebrafish gastrulae, highlighting the in vivo relevance of our findings. Together, these results demonstrate that temporal dynamics of BMP and Nodal morphogen signaling activate distinct morphogenetic programs governing C&E gastrulation movements within individual tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    中外侧细胞嵌入是一种在整个动物发育过程中用于重塑组织的形态发生策略。秀丽隐杆线虫胚胎的背侧插入涉及两排背侧表皮细胞的中外侧插入,以创建横跨背侧中线的单排,因此是研究细胞嵌入的简单模型。背侧嵌入过程中的极化突出活动需要秀丽隐杆线虫Rac和RhoG直向同源物CED-10和MIG-2,但是在嵌入过程中如何调节这些GTP酶尚未得到彻底研究。在这项研究中,我们描述了Rac特异性鸟嘌呤核苷酸交换因子(GEF)的作用,TIAM-1,在背侧嵌入过程中调节基于肌动蛋白的突出动力学。我们发现TIAM-1可以通过其规范的GEF功能促进由嵌入细胞延伸的主要内侧层状突起的形成,而其N端结构域的作用是负调节嵌入细胞周围异位丝状突起的产生。我们还表明,引导受体UNC-5抑制背侧表皮细胞中的这些异位丝状突起,并且这种作用部分是通过TIAM-1介导的。这些结果扩展了在动物胚胎中上皮细胞定向重排过程中调节基底外侧突出活动的蛋白质网络。
    Mediolateral cell intercalation is a morphogenetic strategy used throughout animal development to reshape tissues. Dorsal intercalation in the Caenorhabditis elegans embryo involves the mediolateral intercalation of two rows of dorsal epidermal cells to create a single row that straddles the dorsal midline, and thus is a simple model to study cell intercalation. Polarized protrusive activity during dorsal intercalation requires the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, but how these GTPases are regulated during intercalation has not been thoroughly investigated. In this study, we characterized the role of the Rac-specific guanine nucleotide exchange factor (GEF) TIAM-1 in regulating actin-based protrusive dynamics during dorsal intercalation. We found that TIAM-1 can promote formation of the main medial lamellipodial protrusion extended by intercalating cells through its canonical GEF function, whereas its N-terminal domains function to negatively regulate the generation of ectopic filiform protrusions around the periphery of intercalating cells. We also show that the guidance receptor UNC-5 inhibits these ectopic filiform protrusions in dorsal epidermal cells and that this effect is in part mediated via TIAM-1. These results expand the network of proteins that regulate basolateral protrusive activity during directed rearrangement of epithelial cells in animal embryos.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    会聚延伸(CE)需要平面细胞极性(PCP)蛋白1,2和肌动蛋白细胞骨架的协调作用,3,4,5,6,但这种关系仍未完全理解。例如,PCP信号传导定向肌动球蛋白收缩,而PCP蛋白的极化定位也需要肌动球蛋白7,8此外,肌动蛋白调节Septins在肌动蛋白组织中起关键作用9,并与青蛙的PCP和CE有关,老鼠,和fish5,6,10,11,12,但只执行PCP依赖细胞行为的子集。Septin丢失概括了在核心PCP破坏后看到的严重的组织水平CE缺陷,但留下了明显的细胞极性完整性。这些结果突出了一个普遍的事实,即细胞运动需要不同但整合的肌动蛋白群体的协调作用,例如迁移细胞中的薄片和薄片足虫13或参与根尖收缩的细胞中的内侧和交界肌动蛋白群体。14,15在非洲爪螨中胚层CE的背景下,三个这样的肌动蛋白群体很重要,称为“节点和电缆”系统的表面网格,4,16,17,18深层细胞-细胞连接处的收缩网络,6,19和中等取向的富含肌动蛋白的突起,表面和深度都存在。4,19,20,21这里,我们利用独特的“二维”节点和电缆系统的适应性来探测PCP蛋白之间的关系,Septins,和这个肌动蛋白网络的极化。我们发现PCP蛋白Vangl2和Prickle2和Septins共定位在节点,节点和电缆系统显示一个神秘的,PCP和Septin依赖性前后(AP)极性在其组织和动力学。
    Convergent extension (CE) requires the coordinated action of the planar cell polarity (PCP) proteins1,2 and the actin cytoskeleton,3,4,5,6 but this relationship remains incompletely understood. For example, PCP signaling orients actomyosin contractions, yet actomyosin is also required for the polarized localization of PCP proteins.7,8 Moreover, the actin-regulating Septins play key roles in actin organization9 and are implicated in PCP and CE in frogs, mice, and fish5,6,10,11,12 but execute only a subset of PCP-dependent cell behaviors. Septin loss recapitulates the severe tissue-level CE defects seen after core PCP disruption yet leaves overt cell polarity intact.5 Together, these results highlight the general fact that cell movement requires coordinated action by distinct but integrated actin populations, such as lamella and lamellipodia in migrating cells13 or medial and junctional actin populations in cells engaged in apical constriction.14,15 In the context of Xenopus mesoderm CE, three such actin populations are important, a superficial meshwork known as the \"node-and-cable\" system,4,16,17,18 a contractile network at deep cell-cell junctions,6,19 and mediolaterally oriented actin-rich protrusions, which are present both superficially and deeply.4,19,20,21 Here, we exploited the amenability of the uniquely \"two-dimensional\" node and cable system to probe the relationship between PCP proteins, Septins, and the polarization of this actin network. We find that the PCP proteins Vangl2 and Prickle2 and Septins co-localize at nodes, and that the node and cable system displays a cryptic, PCP- and Septin-dependent anteroposterior (AP) polarity in its organization and dynamics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:非规范Wnts是可以升高细胞内Ca2+的形态发生原,激活Ca2+/钙调蛋白依赖性蛋白激酶,CaMKII,并促进脊椎动物原肠胚形成过程中的细胞运动。
    结果:斑马鱼在胚胎发生过程中表达七个CaMKII基因;其中两个,camk2b1和camk2g1是收敛扩展(CE)细胞运动所必需的。早在外突时就观察到了CaMKII形态表型。在1-3阶段,神经外胚层和旁轴细胞在两个形态中均未融合。稍后,体节缺乏刻板的形状,而且更宽,间隔更近,和身体间隙角度增加。在24hpf,体节压缩和脊索起伏与较短和较宽的身体轴重合。生成了camk2b1保鲜剂,该保鲜剂显色了camk2b1形态。细胞增殖的水平,细胞凋亡和旁轴和神经外胚层标记在形态中没有变化。通过瞬时药物干预(thapsigargin)在原肠胚形成过程中CaMKII的过度活化也导致CE缺陷。马赛克表达的显性负CaMKII概括了这些表型,并显示出明显的中线分叉。最后,CaMKII的引入部分挽救了Wnt11形态表型。
    结论:总体而言,这些数据支持一个模型,其中由两个基因编码的周期性激活的CaMKII使细胞在CE过程中迁移。
    BACKGROUND: Noncanonical Wnts are morphogens that can elevate intracellular Ca2+, activate the Ca2+/calmodulin-dependent protein kinase, CaMKII, and promote cell movements during vertebrate gastrulation.
    RESULTS: Zebrafish express seven CaMKII genes during embryogenesis; two of these, camk2b1 and camk2g1, are necessary for convergent extension (CE) cell movements. CaMKII morphant phenotypes were observed as early as epiboly. At the 1-3 somite stage, neuroectoderm and paraxial cells remained unconverged in both morphants. Later, somites lacked their stereotypical shape and were wider, more closely spaced, and body gap angles increased. At 24hpf, somite compression and notochord undulation coincided with a shorter and broader body axis. A camk2b1 crispant was generated which phenocopied the camk2b1 morphant. The levels of cell proliferation, apoptosis and paraxial and neuroectodermal markers were unchanged in morphants. Hyperactivation of CaMKII during gastrulation by transient pharmacological intervention (thapsigargin) also caused CE defects. Mosaically expressed dominant-negative CaMKII recapitulated these phenotypes and showed significant midline bifurcation. Finally, the introduction of CaMKII partially rescued Wnt11 morphant phenotypes.
    CONCLUSIONS: Overall, these data support a model whereby cyclically activated CaMKII encoded from two genes enables cell migration during the process of CE.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Preprint
    动物发育过程中上皮的形态变化,如收敛扩展,是通过单个细胞的协同机械活动来实现的。虽然人们对相应的大规模组织流及其遗传驱动因素了解很多,细胞尺度协调的问题仍然悬而未决。我们建议可以根据组织内的机械相互作用和瞬时力平衡来理解这种协调。使用整个胚胎成像数据进行果蝇原肠胚形成,我们利用局部皮质张力平衡与细胞几何形状之间的关系。这揭示了主动张力和被动全局变形的局部正反馈如何解释协调的细胞重排。我们开发了一个模型,该模型桥接了细胞和组织的尺度动力学,并预测了总组织延伸对细胞堆积的初始各向异性和六边形顺序的依赖性。我们的研究提供了对局部细胞尺度活动中整体组织形状编码的一般见解。
    通过皮质张力平衡的受控转换来解释组织流动正张力反馈驱动活跃的细胞插入细胞插入的协调需要局部张力构型的顺序张力动力学模型预测总组织形状从初始细胞顺序的变化。
    Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    尾端发育缺陷,包括尾部回归,尾发育不全和sirenomelia,是影响骨骼的毁灭性条件,紧张,消化性,生殖系统和排泄系统。中胚层迁移和向尾区供血的缺陷已被确定为尾区发育缺陷的可能原因,但都不能令人满意地解释所有三个胚层的结构畸形。在这里,我们描述了跨膜蛋白132a(Tmem132a)突变小鼠的尾发育缺陷,包括骨骼,后神经管闭合术,泌尿生殖道和后肠缺陷。我们表明,在Tmem132a突变胚胎中,内脏内胚层未能被排除在早期后肠的内侧区域,直接导致泄殖腔来源的泌尿生殖系统和胃肠道结构的丢失或畸形,和间接神经管和肾/输尿管缺陷。我们发现TMEM132A介导细胞间相互作用,并与平面电池极性(PCP)调节剂CELSR1和FZD6物理相互作用。基因上,Tmem132a与另一个PCP调节剂Vangl2协同调节神经管闭合。总之,我们已经确定Tmem132a是PCP的新调节剂,和后肠畸形是多个尾部结构发育缺陷的根本原因。
    Caudal developmental defects, including caudal regression, caudal dysgenesis and sirenomelia, are devastating conditions affecting the skeletal, nervous, digestive, reproductive and excretory systems. Defects in mesodermal migration and blood supply to the caudal region have been identified as possible causes of caudal developmental defects, but neither satisfactorily explains the structural malformations in all three germ layers. Here, we describe caudal developmental defects in transmembrane protein 132a (Tmem132a) mutant mice, including skeletal, posterior neural tube closure, genitourinary tract and hindgut defects. We show that, in Tmem132a mutant embryos, visceral endoderm fails to be excluded from the medial region of early hindgut, leading directly to the loss or malformation of cloaca-derived genitourinary and gastrointestinal structures, and indirectly to the neural tube and kidney/ureter defects. We find that TMEM132A mediates intercellular interaction, and physically interacts with planar cell polarity (PCP) regulators CELSR1 and FZD6. Genetically, Tmem132a regulates neural tube closure synergistically with another PCP regulator Vangl2. In summary, we have identified Tmem132a as a new regulator of PCP, and hindgut malformation as the underlying cause of developmental defects in multiple caudal structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号