conditional genetics

  • 文章类型: Journal Article
    斑马鱼适合多种遗传方法。然而,缺乏条件缺失等位基因限制了阶段或细胞特异性基因敲除。这里,我们应用了现有的方案来建立gata2a的floxed等位基因,但由于脱靶整合和不完全敲入而未能做到这一点。为了解决这些问题,我们与Cas12a同时联合靶向在顺式中插入loxP位点,结合转基因反筛选和综合分子分析,以识别脱靶插入并确认靶向敲入蛋白。随后,我们使用我们的方法建立了foxc1a的内源性浮动等位基因,rasa1a,和ruvbl1,每一代人。我们通过验证Cre依赖性缺失来证明这些等位基因的实用性,在每种情况下都产生了预期的表型。最后,我们使用floxedgata2a等位基因来证明淋巴瓣发育过程中的内皮自主需求。一起,我们的研究结果为斑马鱼中内源性Floxed等位基因的常规生成和应用提供了框架。
    The zebrafish is amenable to a variety of genetic approaches. However, lack of conditional deletion alleles limits stage- or cell-specific gene knockout. Here, we applied an existing protocol to establish a floxed allele for gata2a but failed to do so due to off-target integration and incomplete knockin. To address these problems, we applied simultaneous co-targeting with Cas12a to insert loxP sites in cis, together with transgenic counterscreening and comprehensive molecular analysis, to identify off-target insertions and confirm targeted knockins. We subsequently used our approach to establish endogenously floxed alleles of foxc1a, rasa1a, and ruvbl1, each in a single generation. We demonstrate the utility of these alleles by verifying Cre-dependent deletion, which yielded expected phenotypes in each case. Finally, we used the floxed gata2a allele to demonstrate an endothelial autonomous requirement in lymphatic valve development. Together, our results provide a framework for routine generation and application of endogenously floxed alleles in zebrafish.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    The development of tools to manipulate the mouse genome, including knockout and transgenic technology, has revolutionized our ability to explore gene function in mammals. Moreover, for genes that are expressed in multiple tissues or at multiple stages of development, the use of tissue-specific expression of the Cre recombinase allows gene function to be perturbed in specific cell types and/or at specific times. However, it is well known that putative tissue-specific promoters often drive unanticipated \'off-target\' expression. In our efforts to explore the biology of the male reproductive tract, we unexpectedly found that expression of Cre in the central nervous system resulted in recombination in the epididymis, a tissue where sperm mature for ~1-2 weeks following the completion of testicular development. Remarkably, we not only observed reporter expression in the epididymis when Cre expression was driven from neuron-specific transgenes, but also when Cre expression in the brain was induced from an AAV vector carrying a Cre expression construct. A surprisingly wide range of Cre drivers - including six different neuronal promoters as well as the adipose-specific Adipoq Cre promoter - exhibited off-target recombination in the epididymis, with a subset of drivers also exhibiting unexpected activity in other tissues such as the reproductive accessory glands. Using a combination of parabiosis and serum transfer experiments, we find evidence supporting the hypothesis that Cre may be trafficked from its cell of origin to the epididymis through the circulatory system. Together, our findings should motivate caution when interpreting conditional alleles, and suggest the exciting possibility of inter-tissue RNA or protein trafficking in modulation of reproductive biology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Conditional modulation of biological processes plays key roles in basic and applied research and in translation. It can be achieved on various levels via a multitude of approaches. One of the directions is manipulating target protein levels and activity by transcriptional, posttranscriptional, translational, and posttranslational control. Because in most of these techniques, the synthesis of the target proteins is adjusted to the needs, they all rely on the specific half-life of the target protein and its turn-over. Therefore, their time-of-action, in direct correlation to the desired reprogramming of molecular phenotypes caused by altering the target levels, is fixed and determined by the naturally inherent properties. We have introduced the low-temperature degron (lt-degron) to various intact multicellular organisms which allows to control target protein levels and therefore function and activity directly on the level of active protein. The lt-degron uses a combination of Ubiquitin-fusion technique linking target protein degradation to the N-end rule pathway of targeted proteolysis coupled with the use of cell- and tissue-specific promoters.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    The cre-loxP-mediated recombination system (the \"cre-loxP system\") is an integral experimental tool for mammalian genetics and cell biology. Use of the system has greatly expanded our ability to precisely interrogate gene function in the mouse, providing both spatial and temporal control of gene expression. This has been largely due to the simplicity of its use and its adaptability to address diverse biological questions. While the use of the cre-loxP system is becoming increasingly widespread, in particular because of growing availability of conditional mouse mutants, many considerations need to be taken into account when utilizing the cre-loxP system. This review provides an overview of the cre-loxP system and its various permutations. It addresses the limitations of cre-loxP technology and related considerations for experimental design, and it discusses alternative strategies for site-specific genetic recombination and integration. © 2017 by John Wiley & Sons, Inc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号