cofilactin rods

  • 文章类型: Journal Article
    Cofilactin棒(CAR),它们是cofilin-1和肌动蛋白的1:1聚集体,导致缺血性中风和其他疾病的神经突丢失。驱动CAR形成的生化途径已经确立,但是这些途径在缺血条件下如何参与尚不清楚。脑缺血产生ATP耗竭和谷氨酸兴奋毒性,两者都已被证明在其他设置中驱动CAR形成。这里,我们表明CAR是在暴露于缺血样条件的培养神经元中形成的:氧-葡萄糖剥夺(OGD),谷氨酸,或氧化应激。在这些条件中,只有OGD产生显著的ATP消耗,表明CAR形成不需要ATP消耗。此外,OGD诱导的CAR形成被谷氨酸受体拮抗剂MK-801和犬尿烯酸;烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶抑制剂GSK2795039和波西宁;以及ROS清除剂阻断.研究结果确定了从OGD到CAR形成的生化途径,其中由能量衰竭引起的谷氨酸释放导致神经元谷氨酸受体的激活。进而激活NADPH氧化酶以产生氧化应激和CAR。
    Cofilactin rods (CARs), which are 1:1 aggregates of cofilin-1 and actin, lead to neurite loss in ischemic stroke and other disorders. The biochemical pathways driving CAR formation are well-established, but how these pathways are engaged under ischemic conditions is less clear. Brain ischemia produces both ATP depletion and glutamate excitotoxicity, both of which have been shown to drive CAR formation in other settings. Here, we show that CARs are formed in cultured neurons exposed to ischemia-like conditions: oxygen-glucose deprivation (OGD), glutamate, or oxidative stress. Of these conditions, only OGD produced significant ATP depletion, showing that ATP depletion is not required for CAR formation. Moreover, the OGD-induced CAR formation was blocked by the glutamate receptor antagonists MK-801 and kynurenic acid; the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitors GSK2795039 and apocynin; as well as an ROS scavenger. The findings identify a biochemical pathway leading from OGD to CAR formation in which the glutamate release induced by energy failure leads to activation of neuronal glutamate receptors, which in turn activates NADPH oxidase to generate oxidative stress and CARs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    突触丧失是阿尔茨海默病(AD)及相关疾病(ADRD)认知功能下降的主要原因。突触发育取决于神经元细胞骨架的复杂动力学。Cofilin,调节肌动蛋白动力学的主要蛋白质,可以隔离到cofilactin棒中,肌动蛋白饱和肌动蛋白丝的神经突内束,可以破坏囊泡运输并导致突触丢失。杆是人AD和AD和ADRD的小鼠模型中的脑病理学。消除杆是本文的重点。在约20%的啮齿动物海马神经元中,通过疾病相关因素触发了杆形成的一种途径(例如,淀粉样蛋白-β(Aβ)的可溶性寡聚物,需要细胞朊病毒蛋白(PrPC),活性NADPH氧化酶(NOX),和细胞因子/趋化因子受体(CCR)。FDA批准的CXCR4和CCR5拮抗剂在啮齿动物和人类神经元中抑制Aβ诱导的视杆,有效浓度为1-10nM的50%视杆减少(EC50)。值得注意的是,两种D-氨基酸受体活性肽(RAP-103和RAP-310)抑制Aβ诱导的杆,在小鼠神经元中的EC50为〜1pM,在人神经元中的EC50为〜0.1pM。这些肽是D-Ala-肽T-酰胺(DAPTA)的类似物,并且共有对几种CCR依赖性应答拮抗的五肽序列(TTNYT)。RAP-103即使在1µM时也不会抑制神经生成或生长,>106倍以上的EC50。N-末端甲基化,或D-Thr到D-Ser的替换,将RAP-103的棒抑制能力降低103倍,提示高靶标特异性。RAP肽均不抑制兴奋性谷氨酸诱导的神经元杆形成,但是两者都抑制了几种PrPC/NOX途径激活剂在人类神经元中诱导的棒(Aβ,HIV-gp120蛋白,和IL-6)。重要的是,RAP-103完全防止Aβ诱导的成熟和发育中的突触丧失,在0.1nM时,即使在Aβ持续存在的情况下,也会逆转啮齿动物和人类神经元中的杆(T1½〜3h)。因此,这种口头可用,脑通透性肽在减少多因素神经系统疾病中的杆状病变方面应非常有效,这些疾病具有通过PrPC/NOX起作用的混合蛋白病。
    Synapse loss is the principal cause of cognitive decline in Alzheimer\'s disease (AD) and related disorders (ADRD). Synapse development depends on the intricate dynamics of the neuronal cytoskeleton. Cofilin, the major protein regulating actin dynamics, can be sequestered into cofilactin rods, intra-neurite bundles of cofilin-saturated actin filaments that can disrupt vesicular trafficking and cause synaptic loss. Rods are a brain pathology in human AD and mouse models of AD and ADRD. Eliminating rods is the focus of this paper. One pathway for rod formation is triggered in ~20% of rodent hippocampal neurons by disease-related factors (e.g., soluble oligomers of Amyloid-β (Aβ)) and requires cellular prion protein (PrPC), active NADPH oxidase (NOX), and cytokine/chemokine receptors (CCRs). FDA-approved antagonists of CXCR4 and CCR5 inhibit Aβ-induced rods in both rodent and human neurons with effective concentrations for 50% rod reduction (EC50) of 1-10 nM. Remarkably, two D-amino acid receptor-active peptides (RAP-103 and RAP-310) inhibit Aβ-induced rods with an EC50 of ~1 pM in mouse neurons and ~0.1 pM in human neurons. These peptides are analogs of D-Ala-Peptide T-Amide (DAPTA) and share a pentapeptide sequence (TTNYT) antagonistic to several CCR-dependent responses. RAP-103 does not inhibit neuritogenesis or outgrowth even at 1 µM, >106-fold above its EC50. N-terminal methylation, or D-Thr to D-Ser substitution, decreases the rod-inhibiting potency of RAP-103 by 103-fold, suggesting high target specificity. Neither RAP peptide inhibits neuronal rod formation induced by excitotoxic glutamate, but both inhibit rods induced in human neurons by several PrPC/NOX pathway activators (Aβ, HIV-gp120 protein, and IL-6). Significantly, RAP-103 completely protects against Aβ-induced loss of mature and developing synapses and, at 0.1 nM, reverses rods in both rodent and human neurons (T½ ~ 3 h) even in the continuous presence of Aβ. Thus, this orally available, brain-permeable peptide should be highly effective in reducing rod pathology in multifactorial neurological diseases with mixed proteinopathies acting through PrPC/NOX.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Cofilactin棒病理学,可以引发突触丢失,已经在啮齿动物神经元中进行了广泛的研究,海马片,和人神经退行性疾病如阿尔茨海默病(AD)的体内小鼠模型。在这些系统中,由疾病相关因素诱导的杆形成,如AD中淀粉样蛋白-β(Aβ)的可溶性寡聚体,利用需要细胞朊病毒蛋白(PrPC)的途径,NADPH氧化酶(NOX),和细胞因子/趋化因子受体(CCR5和/或CXCR4)。然而,杆途径尚未在人类神经元模型中进行系统评估。这里,我们描述了从人诱导的多能干细胞(iPSCs)分化的谷氨酸能神经元在PrPC依赖性途径的激活剂作用下形成棒的过程.基质的优化,细胞密度,神经胶质条件培养基的使用产生了一个强大的系统,用于研究在没有神经胶质的情况下Aβ诱导的棒的发育,提示细胞自主途径。年轻神经元中的棒诱导需要PrPC的异位表达,但是这种依赖性在第55天消失了。杆诱导途径内蛋白质的定量表明,PrPC和CXCR4表达的增加可能是第35天和第55天之间杆对Aβ的反应加倍的因素。FDA批准的CXCR4和CCR5拮抗剂抑制杆反应。主要在树突中观察到棒,尽管严重的细胞骨架破坏阻止了超过40%的棒分配给轴突或树突。在没有神经胶质的情况下,在这种情况下,杆更容易被观察到,神经元成熟并激发动作电位,但不形成功能性突触。然而,含有PSD95的树突棘与含有谷氨酸转运体的突触前囊泡的轴突区域相关,VGLUT1。因此,我们的研究结果确定干细胞衍生的神经元是研究人类细胞环境中的cofilactin杆状蛋白形成和开发有效治疗策略的稳健模型,用于治疗由不同杆状蛋白引发剂引起的多种蛋白病引起的痴呆.
    Cofilactin rod pathology, which can initiate synapse loss, has been extensively studied in rodent neurons, hippocampal slices, and in vivo mouse models of human neurodegenerative diseases such as Alzheimer\'s disease (AD). In these systems, rod formation induced by disease-associated factors, such as soluble oligomers of Amyloid-β (Aβ) in AD, utilizes a pathway requiring cellular prion protein (PrPC), NADPH oxidase (NOX), and cytokine/chemokine receptors (CCR5 and/or CXCR4). However, rod pathways have not been systematically assessed in a human neuronal model. Here, we characterize glutamatergic neurons differentiated from human-induced pluripotent stem cells (iPSCs) for the formation of rods in response to activators of the PrPC-dependent pathway. Optimization of substratum, cell density, and use of glial-conditioned medium yielded a robust system for studying the development of Aβ-induced rods in the absence of glia, suggesting a cell-autonomous pathway. Rod induction in younger neurons requires ectopic expression of PrPC, but this dependency disappears by Day 55. The quantification of proteins within the rod-inducing pathway suggests that increased PrPC and CXCR4 expression may be factors in the doubling of the rod response to Aβ between Days 35 and 55. FDA-approved antagonists to CXCR4 and CCR5 inhibit the rod response. Rods were predominantly observed in dendrites, although severe cytoskeletal disruptions prevented the assignment of over 40% of the rods to either an axon or dendrite. In the absence of glia, a condition in which rods are more readily observed, neurons mature and fire action potentials but do not form functional synapses. However, PSD95-containing dendritic spines associate with axonal regions of pre-synaptic vesicles containing the glutamate transporter, VGLUT1. Thus, our results identified stem cell-derived neurons as a robust model for studying cofilactin rod formation in a human cellular environment and for developing effective therapeutic strategies for the treatment of dementias arising from multiple proteinopathies with different rod initiators.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号