coenzyme Q

辅酶 Q
  • 文章类型: Journal Article
    The presented literature review reveals the topic of the features of risk factors for cognitive impairment in women in the perimenopausal period (PMP), as well as the possibilities of their earliest detection and correction. The paper searches for various symptoms and predictors of the development of cognitive impairment in women in the PMP. The key features include certain difficulties in making a diagnosis at earlier stages. The relationship of metabolic disorders with factors negatively affecting the health of women in the PPP, as well as contributing to the deterioration of cognitive functions, is considered. Women are more at risk of developing cognitive impairment and represent a specific target group that requires special attention in assessing risk factors and methods for correcting cognitive disorders. To date, the relationship between gender and dementia risk still needs to be studied in more depth. Given this, menopause is an important physiological period, as it is accompanied by intense hormonal changes that may be the direct cause of cognitive decline. Many women experience mood disorders, anxiety, increased mental and/or physical fatigue, irritability, mild cognitive disorders, which requires an interdisciplinary approach by doctors to this issue. All these manifestations should be evaluated and corrected in time to avoid their progression and a decrease in the quality of life. An integrated approach to therapy, both medicinal and non-medicinal, can significantly improve the quality of life of patients in the PPP.
    В обзоре литературы рассматриваются особенности факторов риска эмоциональных расстройств и когнитивных нарушений (КН) у женщин в перименопаузальном периоде (ПМП), а также возможности их наиболее раннего выявления и коррекции. Проанализирована значимость различных симптомов и предикторов развития КН у женщин в ПМП. Частыми являются сложности своевременной постановки диагноза. Рассмотрена связь метаболических нарушений с факторами, негативно влияющими на состояние здоровья женщин в ПМП, а также способствующими ухудшению когнитивных функций. Женщины более подвержены риску развития эмоциональных расстройств и КН и представляют специфическую группу пациентов, требующую особого внимания по оценке факторов риска и методам коррекции когнитивных функций. На сегодняшний день связь между полом и риском развития деменции все еще нуждается в более глубоком изучении. ПМП является важным физиологическим периодом, поскольку сопровождается значительными гормональными изменениями, которые могут быть одной из причин КН. Многие женщины испытывают расстройства настроения, тревогу, повышенную умственную и/или физическую утомляемость, раздражительность, легкие КН, что требует междисциплинарного подхода врачей к их лечению. Все эти проявления должны быть вовремя выявлены и скорректированы во избежание их прогрессирования и снижения качества жизни. Комплексная лекарственная и немедикаментозная терапия может существенно повысить качество жизни пациенток в ПМП.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    人骨骼肌线粒体调节能量消耗。研究表明,超重受试者的肌肉线粒体功能发生了改变,以及对营养过剩和热量限制的反应。肥胖和超重的两个代谢特征是(1)肌肉脂肪酸氧化不完全和(2)循环乳酸水平升高。在这项研究中,我认为这些代谢紊乱可能源于肌肉线粒体电子传递系统中的共同来源。具体来说,电子传输链的超分子结构的重组可以促进容易接近的辅酶Q池的维持,这是代谢脂质底物所必需的。这种方法有望保持有效的电子转移,前提是有足够的复合物III来支持Q循环。这种适应可以增强脂肪酸氧化并防止线粒体过载,从而减少乳酸的产生。这些见解促进了我们对超重状态下代谢失调的分子机制的理解。这为寻求代谢健康的针对性干预提供了基础。
    Human skeletal muscle mitochondria regulate energy expenditure. Research has shown that the functionality of muscle mitochondria is altered in subjects with overweight, as well as in response to nutrient excess and calorie restriction. Two metabolic features of obesity and overweight are (1) incomplete muscular fatty acid oxidation and (2) increased circulating lactate levels. In this study, I propose that these metabolic disturbances may originate from a common source within the muscle mitochondrial electron transport system. Specifically, a reorganization of the supramolecular structure of the electron transport chain could facilitate the maintenance of readily accessible coenzyme Q pools, which are essential for metabolizing lipid substrates. This approach is expected to maintain effective electron transfer, provided that there is sufficient complex III to support the Q-cycle. Such an adaptation could enhance fatty acid oxidation and prevent mitochondrial overload, thereby reducing lactate production. These insights advance our understanding of the molecular mechanisms underpinning metabolic dysregulation in overweight states. This provides a basis for targeted interventions in the quest for metabolic health.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体内视网膜色素上皮(RPE)中线粒体电子传递复合物(ETC)功能的丧失导致RPE去分化和进行性光感受器变性,并与年龄相关性黄斑变性的发病机制有关。替代氧化酶在哺乳动物细胞和组织中的异种表达减轻了一些线粒体电子传递缺陷引起的表型。但可能会加剧其他人。我们在体内ETC缺陷的鼠RPE中表达了来自Cionaintestinalis(AOX)的替代氧化酶,以评估刺激辅酶Q氧化和呼吸而不产生ATP的视网膜后果。在这种情况下,AOX的RPE限制性表达令人惊讶地有益。这种集中的干预减轻了RPEmTORC1的激活,去分化,肥大,应力标记表达,假性缺氧,和有氧糖酵解。这些RPE细胞自主变化伴随着向光感受器的葡萄糖递送增加,伴随着光感受器结构和功能的改善。RPE限制性AOX表达使ETC缺陷型RPE中琥珀酸和2-羟基戊二酸的累积水平正常化,并抵消许多神经视网膜代谢物的缺陷。这些特征可以归因于线粒体内膜黄素蛋白如琥珀酸脱氢酶和脯氨酸脱氢酶的激活,和减轻2-羟戊二酸依赖性双加氧酶的抑制,如脯氨酸羟化酶和表观遗传修饰剂。我们的工作强调了RPE中辅酶Q氧化对视网膜外健康的重要性,并确定了在RPE线粒体功能障碍的背景下对光感受器存活至关重要的代谢网络。
    Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肥胖代表着重大的健康挑战,与II型糖尿病等疾病有着错综复杂的联系,代谢综合征,和肝脏脂肪变性.几种现有的肥胖治疗方法表现出有限的疗效,不良副作用或长期维持治疗效果的能力有限。最近,调节辅酶Q(CoQ)代谢已成为治疗代谢综合征的有希望的靶标。这种潜在的干预可能涉及通过使用其生物合成前体的类似物来调节内源性CoQ生物合成,例如β-间苯二酸(β-RA)。这里,我们显示口服补充β-RA,纳入饮食诱导的肥胖(DIO)小鼠的饮食中,导致体重大幅下降。通过使白色脂肪组织(WAT)中线粒体CoQ代谢正常化,部分阐明了β-RA的抗肥胖作用。此外,我们确定了肝脏脂质代谢的HFN4α/LXR依赖性转录组激活,这有助于β-RA的抗肥胖作用。因此,β-RA减轻WAT肥大,预防肝脏脂肪变性,抵消WAT和肝脏的代谢异常,并通过降低胰岛素/胰高血糖素比率和胃抑制肽(GIP)的血浆水平来增强葡萄糖稳态。此外,β-RA的药代动力学评估支持其翻译潜力。因此,β-RA作为一种有效的,安全,以及用于治疗和/或预防肥胖症的可翻译的治疗选择,代谢功能障碍相关脂肪变性肝病(MASLD)。
    Obesity represents a significant health challenge, intricately linked to conditions such as type II diabetes, metabolic syndrome, and hepatic steatosis. Several existing obesity treatments exhibit limited efficacy, undesirable side effects or a limited capability to maintain therapeutics effects in the long-term. Recently, modulation Coenzyme Q (CoQ) metabolism has emerged as a promising target for treatment of metabolic syndrome. This potential intervention could involve the modulation of endogenous CoQ biosynthesis by the use of analogs of the precursor of its biosynthesis, such as β-resorcylic acid (β-RA). Here, we show that oral supplementation with β-RA, incorporated into the diet of diet-induced obese (DIO) mice, leads to substantial weight loss. The anti-obesity effects of β-RA are partially elucidated through the normalization of mitochondrial CoQ metabolism in white adipose tissue (WAT). Additionally, we identify an HFN4α/LXR-dependent transcriptomic activation of the hepatic lipid metabolism that contributes to the anti-obesity effects of β-RA. Consequently, β-RA mitigates WAT hypertrophy, prevents hepatic steatosis, counteracts metabolic abnormalities in WAT and liver, and enhances glucose homeostasis by reducing the insulin/glucagon ratio and plasma levels of gastric inhibitory peptide (GIP). Moreover, pharmacokinetic evaluation of β-RA supports its translational potential. Thus, β-RA emerges as an efficient, safe, and translatable therapeutic option for the treatment and/or prevention of obesity, metabolic dysfunction-associated steatotic liver disease (MASLD).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    变形虫是以细菌为食的环境捕食者,真菌,和其他真核微生物。捕食相互作用会改变微生物群落,并对吞噬抗性或逃逸施加选择性压力,反过来,寄养毒力属性。无处不在的真菌变形虫原虫在真菌王国中具有广泛的猎物谱,但歧视了酵母进化枝的成员,如酿酒酵母和光滑念珠菌。这里,我们表明,真菌之间的这种猎物区分仅基于泛醌作为捕食者必需的辅因子的存在。虽然变形虫很容易以具有CoQ的真菌为食,该真菌具有较长的异戊二烯基侧链变体CoQ8-10,例如来自念珠菌进化枝的那些,它未能在CoQ变种较短的人身上扩散,特别是从酵母进化枝(CoQ6)。用辅酶Q9或辅酶Q10补充非食用酵母拯救了金牛的生长,强调长异戊二烯基侧链的重要性。酿酒酵母中CoQ9的异源生物合成通过引入负责从进化的更基本的脂肪耶氏酵母生产CoQ9的基因来补充天然CoQ6的功能。结果表明,在酵母进化枝成员中使用CoQ6可能起源于真菌谱系中的掠夺性逃逸策略,并且可以保留在能够通过发酵茁壮成长的生物体中。
    目的:泛醌(CoQ)是所有需氧细菌和真核生物呼吸链中的通用电子载体。通常8-10个异戊二烯基单元确保它们在脂质双层内的定位。真菌中的酵母进化枝成员仅使用6。原因尚不清楚。在这里,我们提供了证据,证明CoQ6的使用有效地保护了这些真菌免受无处不在的真菌变形虫的捕食。变形虫在辅酶Q6酵母的饮食中挨饿,可以通过添加更长的辅酶Qs或辅酶Q9生物合成途径的基因工程来补充。
    Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation.
    OBJECTIVE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    琥珀酸在心肌缺血过程中积累,并在再灌注过程中迅速氧化,通过从线粒体复合物II到复合物I的反向电子转移(RET)导致活性氧(ROS)产生,有利于细胞死亡。鉴于连接蛋白43(Cx43)调节线粒体ROS的产生,我们使用诱导型敲除Cx43Cre-ER(T)/fl小鼠研究了Cx43是否影响RET。耗氧量,ROS生产,在肌膜下分析了膜电位和辅酶Q(CoQ)池(SSM,表达Cx43)和从野生型Cx43fl/fl小鼠和用4-羟基他莫昔芬(4OHT)治疗的Cx43Cre-ER(T)/fl敲除动物分离的纤维间(IFM)心脏线粒体。此外,在接受缺血再灌注(IR)的这些动物的离体心脏中评估梗死面积,无论是否用丙二酸治疗,复合物II抑制剂减弱RET。在SSM中,琥珀酸依赖性ROS产生和RET显著降低,但不是IFM,来自缺乏Cx43的动物。线粒体膜电位,RET司机,群体之间是相似的,而CoQ池(2.165±0.338vs.4.18±0.55nmol/mg蛋白质,p<0.05),其还原状态在Cx43缺陷动物中明显较低。与Cx43fl/fl相比,用4OHT治疗的Cx43Cre-ER(T)/fl小鼠的离体心脏在IR后的梗死面积较小,尽管在缺血末期琥珀酸浓度相似,没有丙二酸盐的额外保护。Cx43缺乏减弱SSM中RET产生的ROS,但不是IFM,并与CoQ水平的降低和其氧化还原状态的变化有关。这些结果可能部分解释了在这些动物中观察到的梗死面积减少及其缺乏丙二酸保护作用。
    Succinate accumulates during myocardial ischemia and is rapidly oxidized during reperfusion, leading to reactive oxygen species (ROS) production through reverse electron transfer (RET) from mitochondrial complex II to complex I, and favoring cell death. Given that connexin 43 (Cx43) modulates mitochondrial ROS production, we investigated whether Cx43 influences RET using inducible knock-out Cx43Cre-ER(T)/fl mice. Oxygen consumption, ROS production, membrane potential and coenzyme Q (CoQ) pool were analyzed in subsarcolemmal (SSM, expressing Cx43) and interfibrillar (IFM) cardiac mitochondria isolated from wild-type Cx43fl/fl mice and Cx43Cre-ER(T)/fl knock-out animals treated with 4-hydroxytamoxifen (4OHT). In addition, infarct size was assessed in isolated hearts from these animals submitted to ischemia-reperfusion (IR), and treated or not with malonate, a complex II inhibitor attenuating RET. Succinate-dependent ROS production and RET were significantly lower in SSM, but not IFM, from Cx43-deficient animals. Mitochondrial membrane potential, a RET driver, was similar between groups, whereas CoQ pool (2.165 ± 0.338 vs. 4.18 ± 0.55 nmol/mg protein, p < 0.05) and its reduction state were significantly lower in Cx43-deficient animals. Isolated hearts from Cx43Cre-ER(T)/fl mice treated with 4OHT had a smaller infarct size after IR compared to Cx43fl/fl, despite similar concentration of succinate at the end of ischemia, and no additional protection by malonate. Cx43 deficiency attenuates ROS production by RET in SSM, but not IFM, and was associated with a decrease in CoQ levels and a change in its redox state. These results may partially explain the reduced infarct size observed in these animals and their lack of protection by malonate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    辅酶Q(CoQ),也被称为泛醌,包含苯醌头基和长的类异戊二烯侧链。因此,它是极其疏水的并且位于膜中。它以其作为线粒体电子传递链(ETC)和其他几种细胞过程中的电子转运蛋白的复杂功能而闻名。事实上,CoQ似乎是细胞氧化还原平衡的核心。值得注意的是,从细菌到脊椎动物,其结构和性质没有改变。在后生动物中,它在所有细胞中合成,在大多数细胞中发现,也许所有的,生物膜。CoQ也被称为营养补充剂,主要是因为它参与了抗氧化防御。然而,口服CoQ是否有任何健康益处尚不清楚。在这里,我们回顾了CoQ作为氧化还原活性分子在ETC和其他酶系统中的功能,它在活性氧产生中作为助氧化剂的作用,以及它在抗氧化机制中的单独参与。我们还回顾了CoQ生物合成,由于其极端的疏水性而特别复杂,以及原发性和继发性CoQ缺乏的生物学后果,包括人类患者。由于CoQ生物合成基因的突变,原发性CoQ缺乏症是一种罕见的先天性疾病。继发性CoQ缺乏症更为常见,因为它伴随着各种病理状况,包括线粒体疾病以及衰老。在这种情况下,我们讨论的重要性,但也是巨大的困难,通过补充CoQ来缓解CoQ缺乏症。
    Coenzyme Q (CoQ), also known as ubiquinone, comprises a benzoquinone head group and a long isoprenoid side chain. It is thus extremely hydrophobic and resides in membranes. It is best known for its complex function as an electron transporter in the mitochondrial electron transport chain (ETC) but is also required for several other crucial cellular processes. In fact, CoQ appears to be central to the entire redox balance of the cell. Remarkably, its structure and therefore its properties have not changed from bacteria to vertebrates. In metazoans, it is synthesized in all cells and is found in most, and maybe all, biological membranes. CoQ is also known as a nutritional supplement, mostly because of its involvement with antioxidant defenses. However, whether there is any health benefit from oral consumption of CoQ is not well established. Here we review the function of CoQ as a redox-active molecule in the ETC and other enzymatic systems, its role as a prooxidant in reactive oxygen species generation, and its separate involvement in antioxidant mechanisms. We also review CoQ biosynthesis, which is particularly complex because of its extreme hydrophobicity, as well as the biological consequences of primary and secondary CoQ deficiency, including in human patients. Primary CoQ deficiency is a rare inborn condition due to mutation in CoQ biosynthetic genes. Secondary CoQ deficiency is much more common, as it accompanies a variety of pathological conditions, including mitochondrial disorders as well as aging. In this context, we discuss the importance, but also the great difficulty, of alleviating CoQ deficiency by CoQ supplementation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    辅酶Q(CoQ)是一种广泛分布于自然界的脂类化合物,在新陈代谢中具有关键功能,防止氧化损伤和铁中毒和其他过程。CoQ生物合成是涉及几种蛋白质的保守且复杂的途径。COQ2是跨膜异戊二烯转移酶的UbiA家族的成员,该酶催化CoQ的头部和尾部前体的缩合,这是过程中的关键步骤,因为它的产品是第一个中间体,将通过合成过程的下一个组件在头部进行修饰。这种蛋白质的突变与人类原发性CoQ缺乏症有关,一种罕见的疾病,主要影响能量需求高的器官。COQ2催化的反应及其机理尚不清楚。这里,我们旨在通过使用基于同源性的策略探索可能的底物结合位点来阐明COQ2反应,包括在蛋白质数据库(PDB)中鉴定具有已解决结构的可用配体结合的同系物,以及它们随后在COQ2的AlphaFold预测模型中的结构叠加。结果突出了位于中心腔或基质环上的一些残基,这些残基可能与底物相互作用有关,其中一些在原发性CoQ缺乏症患者中发生突变。此外,我们分析了在人类中发现的致病突变引入的结构修饰。这些发现为理解COQ2的功能提供了新的思路,因此,CoQ的生物合成和原发性CoQ缺乏症的致病性。
    Coenzyme Q (CoQ) is a lipidic compound that is widely distributed in nature, with crucial functions in metabolism, protection against oxidative damage and ferroptosis and other processes. CoQ biosynthesis is a conserved and complex pathway involving several proteins. COQ2 is a member of the UbiA family of transmembrane prenyltransferases that catalyzes the condensation of the head and tail precursors of CoQ, which is a key step in the process, because its product is the first intermediate that will be modified in the head by the next components of the synthesis process. Mutations in this protein have been linked to primary CoQ deficiency in humans, a rare disease predominantly affecting organs with a high energy demand. The reaction catalyzed by COQ2 and its mechanism are still unknown. Here, we aimed at clarifying the COQ2 reaction by exploring possible substrate binding sites using a strategy based on homology, comprising the identification of available ligand-bound homologs with solved structures in the Protein Data Bank (PDB) and their subsequent structural superposition in the AlphaFold predicted model for COQ2. The results highlight some residues located on the central cavity or the matrix loops that may be involved in substrate interaction, some of which are mutated in primary CoQ deficiency patients. Furthermore, we analyze the structural modifications introduced by the pathogenic mutations found in humans. These findings shed new light on the understanding of COQ2\'s function and, thus, CoQ\'s biosynthesis and the pathogenicity of primary CoQ deficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    泛醇或辅酶Q(CoQ)是呼吸链中的脂溶性电子载体,是代谢途径中各种酶的电子受体,这些酶在线粒体内膜的辅因子中心处相交。CoQ的还原形式是一种抗氧化剂,防止脂质过氧化。在这项研究中,我们已经优化了UV检测的HPLC方法,用于生物材料中的CoQ分析,其中包括快速一步萃取到正丙醇中,然后将样品直接注射到色谱柱上。使用此方法,我们测量了氧化,减少和总CoQ池,并监测CoQ氧化还原状态的变化,以响应细胞培养条件和生物能扰动。我们发现缺氧或硫化物暴露会诱导细胞内CoQ池中的还原转变。然而,缺氧的影响是,通过暴露于环境空气而迅速逆转。电子传递链中不同位点的干预可以诱导氧化或还原方向上相当大的氧化还原位移,取决于它们是复合物III的上游还是下游。我们还使用这种方法来确认CoQ水平在小鼠心脏和大脑中更高和更低。总之,本文所述的基于高效液相色谱的方法的可用性,将促进对环境响应的CoQ氧化还原动力学的研究,营养和内源性改变。
    Ubiquinol or coenzyme Q (CoQ) is a lipid-soluble electron carrier in the respiratory chain and an electron acceptor for various enzymes in metabolic pathways that intersect at this cofactor hub in the mitochondrial inner membrane. The reduced form of CoQ is an antioxidant, which protects against lipid peroxidation. In this study, we have optimized a UV-detected HPLC method for CoQ analysis from biological materials, which involves a rapid single-step extraction into n-propanol followed by direct sample injection onto a column. Using this method, we have measured the oxidized, reduced, and total CoQ pools and monitored shifts in the CoQ redox status in response to cell culture conditions and bioenergetic perturbations. We find that hypoxia or sulfide exposure induces a reductive shift in the intracellular CoQ pool. The effect of hypoxia is, however, rapidly reversed by exposure to ambient air. Interventions at different loci in the electron transport chain can induce sizeable redox shifts in the oxidative or reductive direction, depending on whether they are up- or downstream of complex III. We have also used this method to confirm that CoQ levels are higher and more reduced in murine heart versus brain. In summary, the availability of a convenient HPLC-based method described herein will facilitate studies on CoQ redox dynamics in response to environmental, nutritional, and endogenous alterations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体呼吸延伸到ATP生成之外,细胞器参与许多细胞和生理过程。线粒体电子转移系统的组成部分随呼吸的平行变化使其成为协调细胞适应氧气水平变化的适当枢纽。功能性缺氧下呼吸如何变化(即,当细胞内O2水平限制线粒体呼吸时)通过电子转移系统中继以影响线粒体适应和缺氧暴露后的重塑仍然不明确。这在很大程度上是由于在体育锻炼期间将孤立的线粒体的功能与人类联系起来的研究中,在受控和定义的O2水平下整合发现的挑战。在这里,我们介绍了在离体线粒体缺氧条件下的实验,肌管和锻炼人类。用孤立的线粒体进行稳态呼吸测定,我们发现呼吸的氧限制减少了电子流和氧化磷酸化,降低了线粒体膜电位差异,和减少线粒体钙流入。同样,在功能性缺氧的肌管中,线粒体钙的摄取降低,以响应肌浆网钙的收缩释放。在肌管和人骨骼肌中,线粒体适应性反应和收缩后的重塑均减弱。我们的结果表明,通过调节钙的摄取,线粒体电子转移系统是在功能性缺氧下协调细胞适应的枢纽。
    Mitochondrial respiration extends beyond ATP generation, with the organelle participating in many cellular and physiological processes. Parallel changes in components of the mitochondrial electron transfer system with respiration render it an appropriate hub for coordinating cellular adaption to changes in oxygen levels. How changes in respiration under functional hypoxia (i.e., when intracellular O2 levels limit mitochondrial respiration) are relayed by the electron transfer system to impact mitochondrial adaption and remodeling after hypoxic exposure remains poorly defined. This is largely due to challenges integrating findings under controlled and defined O2 levels in studies connecting functions of isolated mitochondria to humans during physical exercise. Here we present experiments under conditions of hypoxia in isolated mitochondria, myotubes and exercising humans. Performing steady-state respirometry with isolated mitochondria we found that oxygen limitation of respiration reduced electron flow and oxidative phosphorylation, lowered the mitochondrial membrane potential difference, and decreased mitochondrial calcium influx. Similarly, in myotubes under functional hypoxia mitochondrial calcium uptake decreased in response to sarcoplasmic reticulum calcium release for contraction. In both myotubes and human skeletal muscle this blunted mitochondrial adaptive responses and remodeling upon contractions. Our results suggest that by regulating calcium uptake the mitochondrial electron transfer system is a hub for coordinating cellular adaption under functional hypoxia.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号