co-transcriptional splicing

共转录剪接
  • 文章类型: Journal Article
    剪接是高度调节的过程,对于适当的mRNA前成熟和维持健康的细胞环境至关重要。剪接事件受到正在进行的转录的影响,相邻的拼接事件,以及相应前mRNA转录物上的顺式和反式调节因子。在这种复杂的监管环境中,剪接动力学有可能影响剪接结果,但历来在体内研究具有挑战性。在这次审查中,我们重点介绍了最近的技术进步,这些进步使得能够测量全局剪接动力学和单个内含子剪接动力学的可变性。我们证明了如何识别与剪接动力学相关的特征增加了我们形成剪接动力学如何在体内调节的潜在模型的能力。
    Splicing is a highly regulated process critical for proper pre-mRNA maturation and the maintenance of a healthy cellular environment. Splicing events are impacted by ongoing transcription, neighboring splicing events, and cis and trans regulatory factors on the respective pre-mRNA transcript. Within this complex regulatory environment, splicing kinetics have the potential to influence splicing outcomes but have historically been challenging to study in vivo. In this review, we highlight recent technological advancements that have enabled measurements of global splicing kinetics and of the variability of splicing kinetics at single introns. We demonstrate how identifying features that are correlated with splicing kinetics has increased our ability to form potential models for how splicing kinetics may be regulated in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    剪接体组装有助于剪接调节的重要但不完全理解的方面。Prp45是一种酵母剪接因子,它作为一个延伸的折叠穿过剪接体,这对于将其组件组合在一起可能很重要。我们使用合成遗传阵列技术对PRP45(prp45(1-169))的截短等位基因的遗传相互作用网络进行了全基因组分析,并发现染色质改型和修饰体为丰富的类别。与相关研究一致,H2A.Z编码HTZ1,以及SWR1,INO80和SAGA复合物的成分代表了突出的相互作用者,htz1赋予最强的生长缺陷。因为Prp45的截短不成比例地影响了含内含子基因的低拷贝数转录本,我们制备了携带无内含子版本的SRB2,VPS75或HRB1的菌株,这是受转录相关功能影响最大的病例.从SRB2中去除内含子,但不从其他基因中去除,部分修复了遗传筛选中确定的一些但不是所有的生长表型。即使在SRB2内含子缺失(srb2Δi)的细胞中,也可以检测到prp45(1-169)和htz1Δ的相互作用。截断较少的变体,prp45(1-330),在16°C时具有htz1Δ的合成生长缺陷,它也坚持在srb2Δi背景中。此外,htz1Δ增强了prp45(1-330)依赖的pre-mRNA高和低效率剪接者的过度积累,基因ECM33和COF1。我们得出的结论是,尽管低表达内含子基因的表达缺陷有助于prp45(1-169)的遗传相互作用,prp45和htz1等位基因之间的遗传相互作用证明了剪接体组装的敏感性,延迟在prp45(1-169),染色质环境。
    Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    前信使RNA的转录和剪接紧密协调,但是这种功能耦合是如何在人类疾病中被破坏的,还有待探索。使用等基因细胞系,患者样本,和突变小鼠模型,我们调查了SF3B1中癌症相关突变如何改变转录.我们发现这些突变降低了RNA聚合酶II(RNAPII)沿基因体的伸长率及其在启动子处的密度。延伸缺陷是由于突变体SF3B1的蛋白质-蛋白质相互作用受损而导致的剪接体组装前的破坏。降低的启动子近端RNAPII密度降低了染色质可及性和启动子处的H3K4me3标记。通过一个不偏不倚的屏幕,我们确定了Sin3/HDAC/H3K4me途径中的表观遗传因素,which,当调制时,逆转录和染色质变化。我们的发现揭示了剪接因子突变状态如何通过受损的染色质景观转录相关变化在功能上表现为表观遗传疾病。我们还提出了靶向Sin3/HDAC复合物作为治疗策略的基本原理。
    Transcription and splicing of pre-messenger RNA are closely coordinated, but how this functional coupling is disrupted in human diseases remains unexplored. Using isogenic cell lines, patient samples, and a mutant mouse model, we investigated how cancer-associated mutations in SF3B1 alter transcription. We found that these mutations reduce the elongation rate of RNA polymerase II (RNAPII) along gene bodies and its density at promoters. The elongation defect results from disrupted pre-spliceosome assembly due to impaired protein-protein interactions of mutant SF3B1. The decreased promoter-proximal RNAPII density reduces both chromatin accessibility and H3K4me3 marks at promoters. Through an unbiased screen, we identified epigenetic factors in the Sin3/HDAC/H3K4me pathway, which, when modulated, reverse both transcription and chromatin changes. Our findings reveal how splicing factor mutant states behave functionally as epigenetic disorders through impaired transcription-related changes to the chromatin landscape. We also present a rationale for targeting the Sin3/HDAC complex as a therapeutic strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    需要严格调节巨噬细胞免疫基因表达以抵抗感染而不存在有害炎症的风险。RNA结合蛋白(RBP)对形成巨噬细胞对病原体的反应的贡献仍然知之甚少。转录组学分析显示,富含丝氨酸/精氨酸(SR)mRNA加工因子家族的成员,SRSF7是巨噬细胞中一组干扰素刺激基因的最佳表达所必需的。利用基因和生化分析,我们发现,除了其在调节可变剪接中的典型作用外,SRSF7驱动干扰素调节转录因子7(IRF7)的转录以促进抗病毒免疫。在Irf7启动子,SRSF7通过与H4K20me1组蛋白甲基转移酶KMT5a(SET8)合作,最大化STAT1转录因子结合和RNA聚合酶II延伸。这些研究定义了SR蛋白在激活转录中的作用,并揭示了协调巨噬细胞抗病毒基因表达的RBP-染色质网络。
    Tight regulation of macrophage immune gene expression is required to fight infection without risking harmful inflammation. The contribution of RNA-binding proteins (RBPs) to shaping the macrophage response to pathogens remains poorly understood. Transcriptomic analysis reveals that a member of the serine/arginine-rich (SR) family of mRNA processing factors, SRSF7, is required for optimal expression of a cohort of interferon-stimulated genes in macrophages. Using genetic and biochemical assays, we discover that in addition to its canonical role in regulating alternative splicing, SRSF7 drives transcription of interferon regulatory transcription factor 7 (IRF7) to promote antiviral immunity. At the Irf7 promoter, SRSF7 maximizes STAT1 transcription factor binding and RNA polymerase II elongation via cooperation with the H4K20me1 histone methyltransferase KMT5a (SET8). These studies define a role for an SR protein in activating transcription and reveal an RBP-chromatin network that orchestrates macrophage antiviral gene expression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    长链非编码RNA(lncRNA)参与顺式基因表达调控。尽管富含细胞染色质部分,这在多大程度上定义了他们的监管潜力仍不清楚。此外,lncRNA染色质束缚的潜在因素,以及高效lncRNA染色质解离的分子基础及其对增强子活性和靶基因表达的影响,仍有待解决。这里,我们开发了chrTT-seq,它将新生RNA的脉冲追踪代谢标记与染色质分馏和瞬时转录组测序相结合,以跟踪新生RNA转录本在染色质上的转录以释放,并允许量化解离动力学。通过整合基因组,转录组,和表观遗传指标,以及RNA结合蛋白倾向,在机器学习模型中,我们确定了定义不同染色质解离动力学的转录组的特征。值得注意的是,从增强子转录的lncRNAs显示染色质保留减少,这表明,除了拼接,它们的染色质解离可能会形成增强剂活性。
    Long non-coding RNAs (lncRNAs) are involved in gene expression regulation in cis. Although enriched in the cell chromatin fraction, to what degree this defines their regulatory potential remains unclear. Furthermore, the factors underlying lncRNA chromatin tethering, as well as the molecular basis of efficient lncRNA chromatin dissociation and its impact on enhancer activity and target gene expression, remain to be resolved. Here, we developed chrTT-seq, which combines the pulse-chase metabolic labeling of nascent RNA with chromatin fractionation and transient transcriptome sequencing to follow nascent RNA transcripts from their transcription on chromatin to release and allows the quantification of dissociation dynamics. By incorporating genomic, transcriptomic, and epigenetic metrics, as well as RNA-binding protein propensities, in machine learning models, we identify features that define transcript groups of different chromatin dissociation dynamics. Notably, lncRNAs transcribed from enhancers display reduced chromatin retention, suggesting that, in addition to splicing, their chromatin dissociation may shape enhancer activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核基因表达在多个水平上受到复杂调节。蛋白质编码基因首先在细胞核中转录为前mRNA,并在转运到细胞质中进行翻译之前经历一系列RNA加工步骤。在RNA加工过程中,大多数人类基因(>95%)经历选择性剪接以从单个基因产生多个mRNA同工型,这有效地多样化了基因组的复杂性。由于大多数基因的剪接是共同转录的,基因表达的调控层通常显示出彼此的功能相互作用。在这次审查中,我们提供了三个不同层的选择性剪接调节的简要概述(由剪接机器控制,转录过程,和染色质结构),强调表观遗传修饰的调节作用和这些层之间的串扰。具体来说,我们将表观遗传修饰对可变剪接的主要影响分为三种不同类型:通过影响转录速率,拼接因子招募,或剪接因子的表达/活性。表观遗传学和剪接的失调在癌症中极为常见,我们还讨论了表观遗传变化如何导致剪接失调及其功能后果的潜在机制。我们的目标是提供不同基因表达层的复杂调控的见解,这将揭示调节疾病相关剪接失调的新方法。本文分为:RNA加工>3'末端加工RNA加工>剪接机制RNA加工>疾病和发育中的剪接调控/选择性剪接RNA>疾病中的RNA。
    Eukaryotic gene expression is intricately regulated at multiple levels. The protein-coding genes are first transcribed as pre-mRNAs in the nucleus and undergo a series of RNA processing steps before being transported into the cytoplasm for translation. During RNA processing, most human genes (>95%) undergo alternative splicing to generate multiple mRNA isoforms from a single gene, which effectively diversifies the genome complexity. Since the splicing of most genes occurs co-transcriptionally, the regulation layers of gene expression often show functional interactions with each other. In this review, we provide a brief overview of alternative splicing regulation in three different layers (controlled by the splicing machinery, transcription process, and chromatin structure), emphasizing the regulatory roles of epigenetic modifications and the crosstalk between these layers. Specifically, we categorize the major effects of the epigenetic modifications on alternative splicing into three different types: by affecting transcription rate, splicing factor recruitment, or the expression/activity of splicing factor. The dysregulation of epigenetics and splicing are extremely common in cancer, we also discuss the potential mechanisms of how epigenetic changes can lead to splicing dysregulation and their functional consequences. We aim to provide insights into the complicated regulation of different gene expression layers, which will shed light on the novel approaches to modulate disease-related splicing dysregulation. This article is categorized under: RNA Processing > 3\' End Processing RNA Processing > Splicing Mechanisms RNA Processing > Splicing Regulation/Alternative Splicing RNA in Disease and Development > RNA in Disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:在拟南芥中,RNA聚合酶II(PolII)通常在聚腺苷酸化位点下游的几百个碱基对内暂停,反映有效的转录终止,但是这种暂停是如何受到监管的,在很大程度上仍然难以捉摸。
    结果:这里,我们通过综合实验与数学建模相结合,分析了3端PolII动力学。我们生成了高分辨率的丝氨酸2磷酸化(Ser2P)PolII定位数据,该数据在3'末端特别富集,并定义了3'末端暂停指数(3'PI)。3'结束暂停的位置而不是范围与终止窗口大小相关。在终止缺陷突变体xrn3中,3'PI没有降低,甚至略有增加,表明3'末端暂停是终止过程中早期和XRN3介导的RNA衰变释放PolII之前的调节步骤。出乎意料的是,3'PI与基因外显子数量和共转录剪接效率密切相关。与外显子较少的基因相比,多个外显子基因通常显示出更强的3'末端停顿和更有效的染色质剪接。剪接的化学抑制会大大降低3'PI并破坏其与外显子数的相关性,但不会全局影响3'末端连读水平。通过用数学模型拟合PolII定位数据进一步证实了这些结果,这使得能够估计定义PolII动力学的参数。
    结论:我们的工作强调,通过共转录剪接的外显子数量是植物基因3'末端PolII暂停水平的主要决定因素。
    In Arabidopsis, RNA Polymerase II (Pol II) often pauses within a few hundred base pairs downstream of the polyadenylation site, reflecting efficient transcriptional termination, but how such pausing is regulated remains largely elusive.
    Here, we analyze Pol II dynamics at 3\' ends by combining comprehensive experiments with mathematical modelling. We generate high-resolution serine 2 phosphorylated (Ser2P) Pol II positioning data specifically enriched at 3\' ends and define a 3\' end pause index (3\'PI). The position but not the extent of the 3\' end pause correlates with the termination window size. The 3\'PI is not decreased but even mildly increased in the termination deficient mutant xrn3, indicating 3\' end pause is a regulatory step early during the termination and before XRN3-mediated RNA decay that releases Pol II. Unexpectedly, 3\'PI is closely associated with gene exon numbers and co-transcriptional splicing efficiency. Multiple exons genes often display stronger 3\' end pauses and more efficient on-chromatin splicing than genes with fewer exons. Chemical inhibition of splicing strongly reduces the 3\'PI and disrupts its correlation with exon numbers but does not globally impact 3\' end readthrough levels. These results are further confirmed by fitting Pol II positioning data with a mathematical model, which enables the estimation of parameters that define Pol II dynamics.
    Our work highlights that the number of exons via co-transcriptional splicing is a major determinant of Pol II pausing levels at the 3\' end of genes in plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    哺乳动物基因组内含子的扩增对全长信使RNA(mRNAs)的产生提出了挑战。越来越多的证据表明这些长的富含AT的序列存在转录障碍。这里,我们研究了RNA聚合酶II(RNAPII)在哺乳动物细胞中以高分辨率延伸,并证明RNAPII跨内含子转录更快。此外,我们发现这种加速需要U1snRNP(U1)与5个剪接位点的延伸复合物结合。U1通过内含子刺激伸长率的作用降低了过早终止和转录停滞的频率,从而显著增加RNA产量。我们进一步表明,由于AT含量和U1结合而引起的RNAPII伸长率的变化解释了先前关于在剪接点和CpG岛边缘暂停或终止的报道。我们建议U1介导的伸长加速已经进化以减轻长的富含AT的内含子对转录完成造成的风险。
    The expansion of introns within mammalian genomes poses a challenge for the production of full-length messenger RNAs (mRNAs), with increasing evidence that these long AT-rich sequences present obstacles to transcription. Here, we investigate RNA polymerase II (RNAPII) elongation at high resolution in mammalian cells and demonstrate that RNAPII transcribes faster across introns. Moreover, we find that this acceleration requires the association of U1 snRNP (U1) with the elongation complex at 5\' splice sites. The role of U1 to stimulate elongation rate through introns reduces the frequency of both premature termination and transcriptional arrest, thereby dramatically increasing RNA production. We further show that changes in RNAPII elongation rate due to AT content and U1 binding explain previous reports of pausing or termination at splice junctions and the edge of CpG islands. We propose that U1-mediated acceleration of elongation has evolved to mitigate the risks that long AT-rich introns pose to transcript completion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    许多剪接体内含子是从RNA聚合酶II(RNAPolII)出现的新生转录物中切除的。细胞类型特异性调节的程度和此类共转录事件的可能功能仍然知之甚少。我们使用急性消耗方法,然后分析与色谱和RNAPolII相关的转录本,研究了RNA结合蛋白PTBP1在此过程中的作用。我们证明PTBP1激活了数百个内含子的共转录切除,一个令人惊讶的效果,因为这种蛋白质是已知的,以促进内含子的保留。重要的是,一些共转录激活的内含子在没有PTBP1的情况下无法完成其剪接。在一个引人注目的例子中,PTBP1依赖性内含子的保留引发编码DNA甲基转移酶DNMT3B的转录本的无义介导的衰变。我们提供的证据表明,这种调控促进了发育神经元中DNMT3B水平的自然下降,并保护分化特异性基因免受异位甲基化。因此,PTBP1激活的共转录剪接是介导细胞身份的表观遗传控制的普遍现象。
    Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脊椎动物基因中具有短外显子的长内含子被认为需要跨外显子的剪接体组装(外显子定义),而不是内含子,因此需要外显子的转录来剪接上游内含子。这里,我们开发了CoLa-seq(共转录套索测序)来研究全基因组共转录剪接的时间和决定因素。出乎意料的是,90%的内含子,包括长内含子,可以在下游外显子转录之前剪接,表明外显子定义对于大多数人类内含子来说不是强制性的。尽管如此,内含子之间的剪接时间差异很大,各种遗传因素决定了这种变异。U2AF2与聚嘧啶束的强结合可预测早期剪接,解释外显子定义-独立剪接。一起,我们的研究结果质疑外显子定义的必要性,并揭示了内含子和外显子长度之外的特征,这些特征决定了剪接时间。
    Long introns with short exons in vertebrate genes are thought to require spliceosome assembly across exons (exon definition), rather than introns, thereby requiring transcription of an exon to splice an upstream intron. Here, we developed CoLa-seq (co-transcriptional lariat sequencing) to investigate the timing and determinants of co-transcriptional splicing genome wide. Unexpectedly, 90% of all introns, including long introns, can splice before transcription of a downstream exon, indicating that exon definition is not obligatory for most human introns. Still, splicing timing varies dramatically across introns, and various genetic elements determine this variation. Strong U2AF2 binding to the polypyrimidine tract predicts early splicing, explaining exon definition-independent splicing. Together, our findings question the essentiality of exon definition and reveal features beyond intron and exon length that are determinative for splicing timing.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号