chromatin remodeling

染色质重塑
  • 文章类型: Journal Article
    染色质免疫沉淀随后测序(ChIP-Seq)允许鉴定DNA结合蛋白的基因组靶向。靶标下的切割和使用核酸酶(CUT&RUN)的释放通过包括核酸酶以消化感兴趣的蛋白质周围的DNA来修饰该过程。结果是更高的信噪比和减少的所需起始材料。这允许从少至500个细胞的高保真序列识别,能够对珍贵的组织样本或原代细胞类型进行染色质分析,以及不太丰富的染色质结合蛋白:所有这些都显着增加了通量。
    Chromatin immunoprecipitation followed by sequencing (ChIP-Seq) allows for the identification of genomic targeting of DNA-binding proteins. Cleavage Under Targets and Release Using Nuclease (CUT&RUN) modifies this process by including a nuclease to digest DNA around a protein of interest. The result is a higher signal-to-noise ratio and decreased required starting material. This allows for high-fidelity sequence identification from as few as 500 cells, enabling chromatin profiling of precious tissue samples or primary cell types, as well as less abundant chromatin-binding proteins: all at significantly increased throughput.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    长链非编码RNA(lncRNA)与葡萄糖稳态密切相关,但是他们的角色在很大程度上仍然未知。在这项研究中,在体外和体内评估了lncRNA-Snhg3在葡萄糖代谢中的潜在作用。这里,我们发现Snhg3与肝糖原形成呈正相关。肝细胞特异性Snhg3敲入(Snhg3-HKI)小鼠的葡萄糖耐量得到改善,而在肝细胞特异性Snhg3敲除(Snhg3-HKO)小鼠中恶化。此外,在Snhg3-HKI小鼠中,肝糖原显着增加,在Snhg3-HKO小鼠中减少,分别。机械上,Snhg3通过诱导染色质重塑和促进蛋白激酶B的磷酸化而增加PPP1R3B的mRNA和蛋白表达水平。这些结果表明,lncRNA-Snhg3在肝糖生成中起关键作用。
    Long noncoding RNAs (lncRNAs) are strongly associated with glucose homeostasis, but their roles remain largely unknown. In this study, the potential role of lncRNA-Snhg3 in glucose metabolism was evaluated both in vitro and in vivo. Here, we found a positive relationship between Snhg3 and hepatic glycogenesis. Glucose tolerance improved in hepatocyte-specific Snhg3 knock-in (Snhg3-HKI) mice, while it worsened in hepatocyte-specific Snhg3 knockout (Snhg3-HKO) mice. Furthermore, hepatic glycogenesis had shown remarkable increase in Snhg3-HKI mice and reduction in Snhg3-HKO mice, respectively. Mechanistically, Snhg3 increased mRNA and protein expression levels of PPP1R3B through inducing chromatin remodeling and promoting the phosphorylation of protein kinase B. Collectively, these results suggested that lncRNA-Snhg3 plays a critical role in hepatic glycogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    跨膜蛋白β-淀粉样前体蛋白(APP)在阿尔茨海默病(AD)的病理生理学中起着重要作用。β-淀粉样蛋白假说认为APP的异常加工会形成神经毒性的β-淀粉样蛋白聚集体,这导致在AD中观察到的认知障碍。虽然许多其他因素有助于AD,有必要更好地了解APP的突触功能。我们发现果蝇APP样(APPL)在与Kismet(Kis)的突触中具有共享和非共享的角色,染色质解旋酶结合域(CHD)蛋白。Kis是CHD7和CHD8的同源物,两者都涉及神经发育障碍,包括CHARGE综合征和自闭症谱系障碍,分别。在其中枢神经系统中表达人APP和BACE的kis和动物中功能突变的丧失显示谷氨酸受体亚基的减少,GluRIIC,GTP酶Rab11和骨形态发生蛋白(BMP),pMad,在果蝇幼虫神经肌肉接头(NMJ)。同样,像内吞这样的过程,幼虫运动,这些动物的神经传递是有缺陷的。我们的药理学和上位性实验表明,Kis和APPL之间存在功能关系,但是Kis不调节幼虫NMJ的appl表达。相反,它可能影响APPL的突触定位,可能是通过促进rab11转录。这些数据确定了AD中染色质重塑蛋白与异常突触功能之间的潜在机制联系。
    The transmembrane protein β-amyloid precursor protein (APP) is central to the pathophysiology of Alzheimer\'s disease (AD). The β-amyloid hypothesis posits that aberrant processing of APP forms neurotoxic β-amyloid aggregates, which lead to the cognitive impairments observed in AD. Although numerous additional factors contribute to AD, there is a need to better understand the synaptic function of APP. We have found that Drosophila APP-like (APPL) has both shared and non-shared roles at the synapse with Kismet (Kis), a chromatin helicase binding domain (CHD) protein. Kis is the homolog of CHD7 and CHD8, both of which are implicated in neurodevelopmental disorders including CHARGE Syndrome and autism spectrum disorders, respectively. Loss of function mutations in kis and animals expressing human APP and BACE in their central nervous system show reductions in the glutamate receptor subunit, GluRIIC, the GTPase Rab11, and the bone morphogenetic protein (BMP), pMad, at the Drosophila larval neuromuscular junction (NMJ). Similarly, processes like endocytosis, larval locomotion, and neurotransmission are deficient in these animals. Our pharmacological and epistasis experiments indicate that there is a functional relationship between Kis and APPL, but Kis does not regulate appl expression at the larval NMJ. Instead, Kis likely influences the synaptic localization of APPL, possibly by promoting rab11 transcription. These data identify a potential mechanistic connection between chromatin remodeling proteins and aberrant synaptic function in AD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    异染色质强制转录基因沉默,并且可以是表观遗传的,但潜在的机制仍不清楚。这里,我们显示组蛋白去乙酰化,异染色质结构域的保守特征,阻断参与染色质分解的SWI/SNF亚家族重塑,从而稳定保留基因沉默的修饰的核小体。组蛋白高乙酰化,由于组蛋白脱乙酰酶(HDAC)活性的丧失或组蛋白乙酰转移酶直接靶向异染色质,允许改造者进入,导致沉默缺陷。可以通过阻碍SWI/SNF活性来绕过在异染色质沉默中对HDAC的要求。突出改造者的关键作用,仅将SWI/SNF靶向异染色质,即使在具有功能性HDAC的细胞中,增加核小体周转,导致有缺陷的基因沉默和受损的表观遗传。这项研究阐明了组蛋白低乙酰化的基本机制,由异色区的高HDAC水平维持,确保稳定的基因沉默和表观遗传,提供与人类疾病相关的基因组调控机制的见解。
    Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    男性不育是一种公认的放化疗副作用。现有精原干细胞(SSC)可以作为任何后续回收的起源。然而,哪种类型的SSC,它们生存和抵抗毒性的机制,它们如何重新开始精子发生仍然是未知的。这里,我们鉴定了在小鼠生精小管中以相对休眠状态出现的少量表达含有Set结构域的蛋白4(Sed4)的SSC。超越高剂量放化疗,然后这些细胞激活以恢复精子发生。删除Setd4+SSC时恢复失败。确认是胎儿起源,这些Sett4+SSC被证明有助于早期睾丸发育,也有助于成年期稳态精子发生。激活后,染色质重塑增加了它们的全基因组可及性,使Notch1和极光激活与p21和p53相应的沉默。这里,Settd4SSC被认为是放化疗诱导的不育症中睾丸发育和生精恢复的起源。
    Male infertility is a recognized side effect of chemoradiotherapy. Extant spermatogonial stem cells (SSCs) may act as originators for any subsequent recovery. However, which type of SSCs, the mechanism by which they survive and resist toxicity, and how they act to restart spermatogenesis remain largely unknown. Here, we identify a small population of Set domain-containing protein 4 (Setd4)-expressing SSCs that occur in a relatively dormant state in the mouse seminiferous tubule. Extant beyond high-dose chemoradiotherapy, these cells then activate to recover spermatogenesis. Recovery fails when Setd4+ SSCs are deleted. Confirmed to be of fetal origin, these Setd4+ SSCs are shown to facilitate early testicular development and also contribute to steady-state spermatogenesis in adulthood. Upon activation, chromatin remodeling increases their genome-wide accessibility, enabling Notch1 and Aurora activation with corresponding silencing of p21 and p53. Here, Setd4+ SSCs are presented as the originators of both testicular development and spermatogenesis recovery in chemoradiotherapy-induced infertility.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    脑血管疾病,尤其是中风,是与高死亡率和慢性残疾相关的关键和异质性临床疾病。全基因组关联研究揭示了相当大的中风遗传性,尽管特定的遗传变异只占中风风险的一小部分,表明表观基因组的重要作用。全基因组关联研究和候选基因方法表明DNA甲基化模式显著影响卒中易感性。此外,染色质重塑剂和非编码RNA调节缺血条件下的基因表达。在此更新的评论中,我们总结了缺血性卒中潜在机遇和挑战的表观遗传学知识的进展。
    脑血管疾病包括不同的临床状况,中风是最严重的。中风是全球第二大死亡原因和长期残疾的主要原因。这是环境之间相互作用产生的多因素条件,遗传和表观遗传因素。在过去的几十年里,几位作者探讨了表观遗传学在卒中中的作用.表观遗传学涉及改变我们的基因如何工作而不改变实际的DNA。基本的表观遗传机制包括DNA甲基化,组蛋白修饰,染色质重塑和基于RNA的机制。其中,DNA甲基化,包括在DNA上添加甲基,是中风研究最多的机制。本摘要通过检查人类研究,回顾了有关这些表观遗传机制如何在中风中发挥作用的研究。了解这些机制有助于找到更好的治疗或预防中风的方法。
    Cerebrovascular diseases, especially stroke, are critical and heterogenous clinical conditions associated with high mortality and chronic disability. Genome-wide association studies reveal substantial stroke heritability, though specific genetic variants account for a minor fraction of stroke risk, suggesting an essential role for the epigenome. Epigenome-wide association studies and candidate gene approaches show that DNA methylation patterns significantly influence stroke susceptibility. Additionally, chromatin remodelers and non-coding RNA regulate gene expression in response to ischemic conditions. In this updated review, we summarized the progress of knowledge on epigenetics in the field of ischemic stroke underlying opportunities and challenges.
    Cerebrovascular diseases include different clinical conditions, with stroke being the most serious. Stroke is the second leading cause of death and the primary cause of long-term disability globally. It is a multifactorial condition resulting from the interaction among environmental, genetic and epigenetic factors. In the last decades, several authors have explored the role of epigenetics in stroke.Epigenetics involves changes in how our genes work without altering the actual DNA. Fundamental epigenetic mechanisms include DNA methylation, histone modifications, chromatin remodeling and RNA-based mechanisms. Among these, DNA methylation, consisting of adding a methyl group to DNA, is the most studied mechanism in stroke. This summary reviews studies on how these epigenetic mechanisms play a role in stroke by examining human research. Understanding these mechanisms helps in finding better ways to treat or prevent stroke.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    高等植物已经发展了复杂的机制来适应波动的环境条件,光在光合作用和影响各种发育过程中起着至关重要的作用,包括光形态发生.暴露于紫外线(UV)辐射会导致细胞损伤,需要有效的DNA修复机制。组蛋白乙酰转移酶(HAT)在调节染色质结构和基因表达中起着至关重要的作用,从而有助于修复机制。HAT促进染色质松弛,实现植物发育和胁迫反应所必需的转录激活。HAT之间错综复杂的关系,光信号通路和染色质动力学已被越来越多的理解,为植物适应性提供有价值的见解。这篇综述探讨了HAT在植物光形态建成中的作用,染色质重塑与基因调控,强调染色质修饰在植物对光和各种胁迫反应中的重要性。它强调需要进一步研究个体HAT家族成员及其与其他表观遗传因素的相互作用。先进的基因组方法和基因组编辑技术为通过有针对性地操纵HAT活动来增强作物的抗逆性和生产力提供了有希望的途径。了解这些机制对于制定改善植物生长和胁迫耐受性的策略至关重要。面对不断变化的气候,为可持续农业做出贡献。
    Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    无细胞DNA(cfDNA)液体活检的技术进步在许多临床应用中引发了指数增长。虽然基于cfDNA的液体活检在个性化癌症治疗方面取得了重大进展,液体活检中表观遗传学的探索和转化为临床实践仍处于起步阶段。这篇全面的综述旨在提供关于cfDNA液体活检中表观遗传学的现状及其相关挑战的广泛而深入的叙述。它强调了表观遗传学在cfDNA液体活检技术中的潜力,希望增强其临床翻译。近年来,cfDNA液体活检技术的发展将表观遗传学推向了分子生物学的前沿。我们才刚刚开始揭示表观遗传学在我们对疾病的理解以及在诊断和治疗领域利用表观遗传学方面的真正潜力。基于表观遗传学的cfDNA液体活检的最新临床应用围绕DNA甲基化在筛查和早期癌症检测中,导致多种癌症早期检测测试的发展和精确定位起源组织的能力。表观遗传学在微小残留病cfDNA液体活检中的临床应用,监测,监视处于初始阶段。片段化模式分析的显着进步为表观遗传生物标志物创造了新途径。然而,cfDNA液体活检的广泛应用面临着许多挑战,包括生物标志物敏感性,特异性,物流,包括基础设施和人员,数据处理,处理,结果解释,可访问性,和成本效益。探索和翻译cfDNA液体活检技术中的表观遗传学可以改变我们对癌症预防和管理的理解和看法。cfDNA液体活检在精确肿瘤学中具有巨大的潜力,可以彻底改变传统的早期癌症检测方法,监测残留病,治疗反应,监视,和药物开发。使液体活检工作流程的实施适应全球本地政策并开发即时检测具有克服全球癌症差异并改善癌症预后的巨大潜力。
    Technological advancements in cell-free DNA (cfDNA) liquid biopsy have triggered exponential growth in numerous clinical applications. While cfDNA-based liquid biopsy has made significant strides in personalizing cancer treatment, the exploration and translation of epigenetics in liquid biopsy to clinical practice is still nascent. This comprehensive review seeks to provide a broad yet in-depth narrative of the present status of epigenetics in cfDNA liquid biopsy and its associated challenges. It highlights the potential of epigenetics in cfDNA liquid biopsy technologies with the hopes of enhancing its clinical translation. The momentum of cfDNA liquid biopsy technologies in recent years has propelled epigenetics to the forefront of molecular biology. We have only begun to reveal the true potential of epigenetics in both our understanding of disease and leveraging epigenetics in the diagnostic and therapeutic domains. Recent clinical applications of epigenetics-based cfDNA liquid biopsy revolve around DNA methylation in screening and early cancer detection, leading to the development of multi-cancer early detection tests and the capability to pinpoint tissues of origin. The clinical application of epigenetics in cfDNA liquid biopsy in minimal residual disease, monitoring, and surveillance are at their initial stages. A notable advancement in fragmentation patterns analysis has created a new avenue for epigenetic biomarkers. However, the widespread application of cfDNA liquid biopsy has many challenges, including biomarker sensitivity, specificity, logistics including infrastructure and personnel, data processing, handling, results interpretation, accessibility, and cost effectiveness. Exploring and translating epigenetics in cfDNA liquid biopsy technology can transform our understanding and perception of cancer prevention and management. cfDNA liquid biopsy has great potential in precision oncology to revolutionize conventional ways of early cancer detection, monitoring residual disease, treatment response, surveillance, and drug development. Adapting the implementation of liquid biopsy workflow to the local policy worldwide and developing point-of-care testing holds great potential to overcome global cancer disparity and improve cancer outcomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    可选择的转录起始位点可影响转录同种型多样性和翻译水平。在最近描述的基因调控形式中,协调的转录和翻译干扰导致蛋白质表达的转录同种型依赖性变化。具体来说,一个长的未解码转录同工型(LUTI)从基因远端启动子转录,干扰基因近端启动子的表达。尽管已经描述了与LUTI表达相关的转录和染色质特征,基于LUTI的转录干扰的潜在机制尚不清楚。使用无偏见的遗传方法,然后是功能基因组学,我们发现Swi/Snf染色质重塑复合物是导致基于LUTI的抑制的共转录核小体重塑所必需的。我们确定了具有串联启动子的基因,这些基因依赖于Swi/Snf功能在蛋白质折叠胁迫期间进行转录干扰,包括LUTI调节的基因。这项研究为Swi/Snf通过顺式转录干扰机制在基因抑制中起直接作用提供了明确的证据。
    Alternative transcription start sites can affect transcript isoform diversity and translation levels. In a recently described form of gene regulation, coordinated transcriptional and translational interference results in transcript isoform-dependent changes in protein expression. Specifically, a long undecoded transcript isoform (LUTI) is transcribed from a gene-distal promoter, interfering with expression of the gene-proximal promoter. Although transcriptional and chromatin features associated with LUTI expression have been described, the mechanism underlying LUTI-based transcriptional interference is not well understood. Using an unbiased genetic approach followed by functional genomics, we uncovered that the Swi/Snf chromatin remodeling complex is required for co-transcriptional nucleosome remodeling that leads to LUTI-based repression. We identified genes with tandem promoters that rely on Swi/Snf function for transcriptional interference during protein folding stress, including LUTI-regulated genes. This study provides clear evidence for Swi/Snf playing a direct role in gene repression via a cis transcriptional interference mechanism.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    虽然比细胞质更难检测,现在很清楚,肌动蛋白聚合发生在细胞核中,它在细胞核的特定过程如转录中起作用,复制,DNA修复许多研究表明,核肌动蛋白聚合通过同源重组促进精确的DNA修复,这可能有助于精确的基因组编辑和基因治疗。这篇综述总结了研究结果,并描述了该领域的挑战和机会。
    Although more difficult to detect than in the cytoplasm, it is now clear that actin polymerization occurs in the nucleus and that it plays a role in the specific processes of the nucleus such as transcription, replication, and DNA repair. A number of studies suggest that nuclear actin polymerization is promoting precise DNA repair by homologous recombination, which could potentially be of help for precise genome editing and gene therapy. This review summarizes the findings and describes the challenges and chances in the field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号