chaperones

伴侣
  • 文章类型: Journal Article
    雷帕霉素的机制靶点(mTOR)是细胞生长和代谢的主要调节因子,整合环境信号来调节合成代谢和分解代谢过程,调节脂质合成,生长因子诱导的细胞增殖,细胞存活,和移民。这些活动是作为两个不同复合物的一部分进行的,mTORC1和mTORC2,每个都有特定的角色。mTORC1和mTORC2是由mTOR与特定配偶体相互作用形成的精细二聚体结构。mTOR仅作为这些大型复合物的一部分,但是它们的组装和激活需要一个专用和复杂的陪伴系统。mTOR折叠和组装与TELO2-TTI1-TTI2(TTT)复合物暂时分离,协助mTOR共翻译折叠成天然构象。然后将成熟的mTOR转移至R2TP复合物以组装活性mTORC1和mTORC2复合物。R2TP与HSP90伴侣一起工作,以促进mTOR中其他亚基的掺入和二聚化。这篇综述总结了我们目前关于HSP90-R2TP-TTT伴侣系统如何促进活性mTORC1和mTORC2复合物的成熟和组装的知识,讨论互动,结构,和机制。
    The mechanistic target of rapamycin (mTOR) is a master regulator of cell growth and metabolism, integrating environmental signals to regulate anabolic and catabolic processes, regulating lipid synthesis, growth factor-induced cell proliferation, cell survival, and migration. These activities are performed as part of two distinct complexes, mTORC1 and mTORC2, each with specific roles. mTORC1 and mTORC2 are elaborated dimeric structures formed by the interaction of mTOR with specific partners. mTOR functions only as part of these large complexes, but their assembly and activation require a dedicated and sophisticated chaperone system. mTOR folding and assembly are temporarily separated with the TELO2-TTI1-TTI2 (TTT) complex assisting the cotranslational folding of mTOR into a native conformation. Matured mTOR is then transferred to the R2TP complex for assembly of active mTORC1 and mTORC2 complexes. R2TP works in concert with the HSP90 chaperone to promote the incorporation of additional subunits to mTOR and dimerization. This review summarizes our current knowledge on how the HSP90-R2TP-TTT chaperone system facilitates the maturation and assembly of active mTORC1 and mTORC2 complexes, discussing interactions, structures, and mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Hsp90是一种分子伴侣,通过ATP依赖性和构象动态功能循环作用于其客户。Hsp90ATP酶的陪伴促进剂,或Ahsa1是Hsp90ATP酶活性的最有效刺激剂。Ahsa1通过保守的基序刺激Hsp90ATPase活性的速率,NxNNWHW.后生动物Ahsa1,但不是酵母,在NxNNWHW基序之前具有额外的20个氨基酸肽,我们将其称为内在伴侣结构域(ICD)。Ahsa1的ICD通过干扰NxNNWHW基序的功能来减少Hsp90ATP酶的刺激。此外,NxNNWHW调节Hsp90对Ahsa1和ATP的表观亲和力。最后,ICD控制Hsp90在细胞中的调节募集,其缺失导致与Hsp90和糖皮质激素受体相互作用的丧失.这项工作为Ahsa1保守区如何调节Hsp90动力学以及它们如何与客户端折叠状态耦合提供了线索。
    Hsp90 is a molecular chaperone that acts on its clients through an ATP-dependent and conformationally dynamic functional cycle. The cochaperone Accelerator of Hsp90 ATPase, or Ahsa1, is the most potent stimulator of Hsp90 ATPase activity. Ahsa1 stimulates the rate of Hsp90 ATPase activity through a conserved motif, NxNNWHW. Metazoan Ahsa1, but not yeast, possesses an additional 20 amino acid peptide preceding the NxNNWHW motif that we have called the intrinsic chaperone domain (ICD). The ICD of Ahsa1 diminishes Hsp90 ATPase stimulation by interfering with the function of the NxNNWHW motif. Furthermore, the NxNNWHW modulates Hsp90\'s apparent affinity to Ahsa1 and ATP. Lastly, the ICD controls the regulated recruitment of Hsp90 in cells and its deletion results in the loss of interaction with Hsp90 and the glucocorticoid receptor. This work provides clues to how Ahsa1 conserved regions modulate Hsp90 kinetics and how they may be coupled to client folding status.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Friedreich共济失调(FRDA)是一种进行性神经退行性疾病,几乎所有患者都是由FXN基因内含子1内扩大的鸟嘌呤-腺嘌呤-腺嘌呤(GAA)三核苷酸重复序列引起的。这导致共济失调蛋白的相对缺乏,一种小核编码的线粒体蛋白,对铁硫簇生物合成至关重要。目前,只有一种药物,奥马维洛酮,适用于FRDA患者,仅限于16岁及以上的患者。这就需要开发新的药物。Frataxin恢复是潜在治疗选择的主要策略之一,因为它解决了疾病的根本原因。理解共济失调蛋白在转录上的控制,转录后,翻译后阶段可以为解决疾病提供潜在的治疗方法。这篇综述旨在概述共济失调素的调节及其对FRDA可能的治疗性治疗的意义。
    Friedreich\'s ataxia (FRDA) is a progressive neurodegenerative disease caused in almost all patients by expanded guanine-adenine-adenine (GAA) trinucleotide repeats within intron 1 of the FXN gene. This results in a relative deficiency of frataxin, a small nucleus-encoded mitochondrial protein crucial for iron-sulfur cluster biogenesis. Currently, there is only one medication, omaveloxolone, available for FRDA patients, and it is limited to patients 16 years of age and older. This necessitates the development of new medications. Frataxin restoration is one of the main strategies in potential treatment options as it addresses the root cause of the disease. Comprehending the control of frataxin at the transcriptional, post-transcriptional, and post-translational stages could offer potential therapeutic approaches for addressing the illness. This review aims to provide a general overview of the regulation of frataxin and its implications for a possible therapeutic treatment of FRDA.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    正确折叠的蛋白质组的维持对于细胞功能和机体健康至关重要。其年龄依赖性崩溃与多种疾病相关。这里,我们发现,尽管辅酶A作为分子辅因子在数百种细胞反应中起着核心作用,限制秀丽隐杆线虫和人类细胞中的辅酶A水平,通过抑制保守的泛酸激酶,促进蛋白质稳定。胞质铁硫簇形成途径的损害,这取决于辅酶A,类似地促进蛋白质稳定并在同一途径中起作用。辅酶A/铁-硫簇缺乏对蛋白质稳定的改善依赖于保守的HLH-30/TFEB转录因子。引人注目的是,在这些条件下,HLH-30通过增强选择伴侣基因的表达来促进蛋白质稳定,从而提供伴侣介导的蛋白质稳定屏蔽,而不是由于其作为自噬和溶酶体生物发生促进因子的作用。这反映了这种保守转录因子的多功能性,可以转录激活广泛的蛋白质质量控制机制,包括伴侣和应激反应基因以及自噬和溶酶体生物发生基因。这些结果突出了TFEB作为关键的促进蛋白质停滞的转录因子,并强调了它及其上游调节因子作为蛋白质停滞相关疾病的潜在治疗靶标。
    The maintenance of a properly folded proteome is critical for cellular function and organismal health, and its age-dependent collapse is associated with a wide range of diseases. Here, we find that despite the central role of Coenzyme A as a molecular cofactor in hundreds of cellular reactions, limiting Coenzyme A levels in C. elegans and in human cells, by inhibiting the conserved pantothenate kinase, promotes proteostasis. Impairment of the cytosolic iron-sulfur clusters formation pathway, which depends on Coenzyme A, similarly promotes proteostasis and acts in the same pathway. Proteostasis improvement by Coenzyme A/iron-sulfur cluster deficiencies are dependent on the conserved HLH-30/TFEB transcription factor. Strikingly, under these conditions, HLH-30 promotes proteostasis by potentiating the expression of select chaperone genes providing a chaperone-mediated proteostasis shield, rather than by its established role as an autophagy and lysosome biogenesis promoting factor. This reflects the versatile nature of this conserved transcription factor, that can transcriptionally activate a wide range of protein quality control mechanisms, including chaperones and stress response genes alongside autophagy and lysosome biogenesis genes. These results highlight TFEB as a key proteostasis-promoting transcription factor and underscore it and its upstream regulators as potential therapeutic targets in proteostasis-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    蛋白质停滞对蛋白质的正常功能至关重要,对细胞健康和生存至关重要。蛋白质停滞包括蛋白质“生命”的所有阶段,也就是说,从翻译到功能性能,最终,退化。蛋白质需要天然构象的功能和存在多种类型的应激,它们的错误折叠和聚集可能会发生。蛋白质的协调网络是细胞中蛋白质停滞的核心。其中,分子伴侣通过防止错误折叠和聚集来维持蛋白质构象的完整性,并引导那些具有异常构象的降解。泛素-蛋白酶体系统(UPS)和自噬是降解蛋白质的主要细胞途径。尽管该网络的组件的故障或功能下降会导致蛋白质毒性和疾病,像神经元退行性疾病一样,潜在因素还没有完全理解。积累错误折叠和聚集的蛋白质被认为是神经变性的主要病理机制。在这一章中,我们已经描述了蛋白质稳定所需的三个主要分支的组成部分-伴侣,UPS和自噬,它们功能的机械基础,以及它们预防各种神经退行性疾病的潜力,像老年痴呆症,帕金森,和亨廷顿病。调节各种蛋白稳定网络蛋白,像监护人一样,E3泛素连接酶,蛋白酶体,和自噬相关蛋白通过小分子以及新的和非常规的方法作为治疗靶点,显示承诺。
    Proteostasis is essential for normal function of proteins and vital for cellular health and survival. Proteostasis encompasses all stages in the \"life\" of a protein, that is, from translation to functional performance and, ultimately, to degradation. Proteins need native conformations for function and in the presence of multiple types of stress, their misfolding and aggregation can occur. A coordinated network of proteins is at the core of proteostasis in cells. Among these, chaperones are required for maintaining the integrity of protein conformations by preventing misfolding and aggregation and guide those with abnormal conformation to degradation. The ubiquitin-proteasome system (UPS) and autophagy are major cellular pathways for degrading proteins. Although failure or decreased functioning of components of this network can lead to proteotoxicity and disease, like neuron degenerative diseases, underlying factors are not completely understood. Accumulating misfolded and aggregated proteins are considered major pathomechanisms of neurodegeneration. In this chapter, we have described the components of three major branches required for proteostasis-chaperones, UPS and autophagy, the mechanistic basis of their function, and their potential for protection against various neurodegenerative conditions, like Alzheimer\'s, Parkinson\'s, and Huntington\'s disease. The modulation of various proteostasis network proteins, like chaperones, E3 ubiquitin ligases, proteasome, and autophagy-associated proteins as therapeutic targets by small molecules as well as new and unconventional approaches, shows promise.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    琥珀酸半醛脱氢酶(SSADH)是参与神经递质γ-氨基丁酸分解代谢的线粒体酶。编码该酶的基因中的致病变异导致SSADH缺乏,表现为肌张力减退的发育性疾病,自闭症,和癫痫。SSADH缺乏症患者通常具有家族特异性基因变异。这里,我们描述了一个展示四种不同SSADH变体的家族:Val90Ala,Cys93Phe,和His180Tyr/Asn255Asp(双变体)。我们提供了这些变体的结构和功能表征,并表明Cys93Phe和Asn255Asp是影响SSADH蛋白稳定性的致病性变体。由于辅因子NAD+结合的损害,这些变体显示高度降低的酶活性。然而,Val90Ala和His180Tyr表现出正常的活性和表达。His180Tyr/Asn255Asp变体作为重组物种表现出高度降低的活性,处于非活动状态,并且在真核细胞中显示非常低的表达。通过增加伴奏蛋白表达或通过化学手段支持蛋白折叠的物质的治疗没有增加SSADH缺乏症患者的致病变体的表达。然而,通过其他物质稳定致病性SSADH变体的折叠可能为该疾病提供治疗选择。
    Succinic semialdehyde dehydrogenase (SSADH) is a mitochondrial enzyme involved in the catabolism of the neurotransmitter γ-amino butyric acid. Pathogenic variants in the gene encoding this enzyme cause SSADH deficiency, a developmental disease that manifests as hypotonia, autism, and epilepsy. SSADH deficiency patients usually have family-specific gene variants. Here, we describe a family exhibiting four different SSADH variants: Val90Ala, Cys93Phe, and His180Tyr/Asn255Asp (a double variant). We provide a structural and functional characterization of these variants and show that Cys93Phe and Asn255Asp are pathogenic variants that affect the stability of the SSADH protein. Due to the impairment of the cofactor NAD+ binding, these variants show a highly reduced enzyme activity. However, Val90Ala and His180Tyr exhibit normal activity and expression. The His180Tyr/Asn255Asp variant exhibits a highly reduced activity as a recombinant species, is inactive, and shows a very low expression in eukaryotic cells. A treatment with substances that support protein folding by either increasing chaperone protein expression or by chemical means did not increase the expression of the pathogenic variants of the SSADH deficiency patient. However, stabilization of the folding of pathogenic SSADH variants by other substances may provide a treatment option for this disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肿瘤内调节性T细胞(Tregs)是癌症免疫治疗耐药的关键介质,包括抗PD-(L)1免疫检查点阻断(ICB)。驱动Treg浸润到肿瘤微环境(TME)中的机制和对CD8+T细胞耗尽的后果仍然难以捉摸。在这里,我们报道热休克蛋白gp96(GRP94)是Treg肿瘤浸润不可缺少的,主要通过gp96在陪伴整合素中的作用。在各种依赖gp96的整合素中,我们发现只有LFA-1(αL整合素)而不是αV,Treg肿瘤归巢需要CD103(αE)或β7整合素。通过基因删除gp96/LFA-1使Treg渗入TME中的损失以CD8+T细胞依赖性方式有效诱导多种ICB抗性鼠癌症模型的排斥,而不丧失自身耐受性。此外,gp96缺失主要通过抑制IL-2/STAT5信号传导来阻碍Treg激活,这也有助于肿瘤消退。通过竞争肿瘤内IL-2,Tregs阻止CD8+肿瘤浸润淋巴细胞(TIL)的激活,驱动TOX诱导并诱导真正的CD8+T细胞衰竭。相比之下,Treg消融导致CD8+T细胞激活而没有TOX诱导,证明了这两个过程的清晰解耦。我们的研究表明,gp96/LFA-1轴在Treg生物学中起着基本作用,并表明Treg特异性gp96/LFA-1靶向代表了一种有价值的癌症免疫治疗策略,而不会造成自身炎症。
    Intratumoral regulatory T cells (Tregs) are key mediators of cancer immunotherapy resistance, including anti-PD-(L)1 immune checkpoint blockade (ICB). The mechanisms driving Treg infiltration into the tumor microenvironment (TME) and the consequence on CD8+ T cell exhaustion remains elusive. Herein, we report that heat shock protein gp96 (GRP94) is indispensable for Treg tumor infiltration, primarily through gp96\'s roles in chaperoning integrins. Among various gp96-dependent integrins, we found that only LFA-1 (αL integrin) but not αV, CD103 (αE) or β7 integrin was required for Treg tumor homing. Loss of Treg infiltration into the TME by genetically deleting gp96/LFA-1 potently induces rejection of multiple ICB-resistant murine cancer models in a CD8+ T cell-dependent manner without loss of self-tolerance. Moreover, gp96 deletion impeded Treg activation primarily by suppressing IL-2/STAT5 signaling, which also contributes to tumor regression. By competing for intratumoral IL-2, Tregs prevent activation of CD8+ tumor-infiltrating lymphocytes (TILs), drive TOX induction and induce bona fide CD8+ T cell exhaustion. By contrast, Treg ablation leads to striking CD8+ T cell activation without TOX induction, demonstrating clear uncoupling of the two processes. Our study reveals that the gp96/LFA-1 axis plays a fundamental role in Treg biology and suggests that Treg-specific gp96/LFA-1 targeting represents a valuable strategy for cancer immunotherapy without inflicting autoinflammatory conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    帕金森病(PD)是一种慢性快速增长的中枢神经系统(CNS)神经退行性疾病,其特征是黑质致密部(SNpc)中多巴胺能神经元的进行性丧失和路易体(LBs)的形成,导致基底神经节内多巴胺缺乏,导致运动和非运动表现。据报道,许多因素导致PD的发病,其中包括环境因素,遗传因素,和衰老因素。而多巴胺能神经元的死亡也是由氧化应激引起的,神经炎症,和自噬障碍。分子伴侣/共伴侣是与另一种蛋白质的不稳定构象体结合并使其稳定的蛋白质。分子伴侣防止非天然多肽之间的不正确相互作用,这增加了产率但不增加反应速率。Bcl-2相关基因(BAG)是一组多功能蛋白,属于BAG共同伴侣家族。最近的研究表明,伴侣与PD相关蛋白相互作用。如BAG家族蛋白的共同伴侣调节伴侣的功能。分子伴侣通过与PD相关蛋白相互作用来调节线粒体功能。本文综述了分子伴侣和PD相关蛋白在PD发病机制中的作用,旨在为预防疾病进展提供替代的分子靶标。
    Parkinsons disease (PD) is a chronic fast growing neurodegenerative disorder of Central Nervous System (CNS) characterized by progressive loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and formation of Lewy bodies (LBs) which causes dopamine deficiency within basal ganglia leading to motor and non-motor manifestation. According to reports, many factors are responsible for pathogenesis of PD which includes environmental factors, genetic factors, and aging factors. Whereas death of dopaminergic neurons is also caused by oxidative stress, neuroinflammation, and autophagy disorder. Molecular chaperones/co-chaperones are proteins that binds to an unstable conformer of another protein and stabilizes it. Chaperones prevent incorrect interaction between non-native polypeptides which increases the yield but not the rate of reaction. The Bcl-2-associated athanogene (BAG) is a multifunctional group of proteins belonging to BAG family of co-chaperones. Recent studies demonstrates that chaperones interact with PD-related proteins. Co-chaperones like BAG family proteins regulate the function of chaperones. Molecular chaperones regulate the mitochondrial functions by interacting with the PD-related proteins associated with it. This review studies the contribution of chaperones and PD-related proteins in pathogenesis of PD aiming to provide an alternate molecular target for preventing the disease progression.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    超过99%的线粒体蛋白质组由细胞核编码并且需要在导入后重新折叠。因此,线粒体蛋白的折叠和激活需要分子伴侣的协调作用。几种热休克蛋白(Hsp)分子伴侣,包括Hsp27、Hsp40/70和Hsp90家族的成员,Hsp60/10在线粒体蛋白导入和折叠中也有确定的作用。“伴侣代码”描述了通过动态翻译后修饰对伴侣活动的调节;但是,对线粒体伴侣的翻译后调节知之甚少。解剖伴侣功能的调节对于了解其在致病条件下的差异调节以及有效治疗策略的潜在发展至关重要。这里,我们总结了最近关于线粒体伴侣的翻译后调控的文献,对线粒体功能的影响,以及对疾病的潜在影响。
    More than 99% of the mitochondrial proteome is encoded by the nucleus and requires refolding following import. Therefore, mitochondrial proteins require the coordinated action of molecular chaperones for their folding and activation. Several heat shock protein (Hsp) molecular chaperones, including members of the Hsp27, Hsp40/70, and Hsp90 families, as well as the chaperonin complex Hsp60/10 have an established role in mitochondrial protein import and folding. The \"Chaperone Code\" describes the regulation of chaperone activity by dynamic post-translational modifications; however, little is known about the post-translational regulation of mitochondrial chaperones. Dissecting the regulation of chaperone function is essential for understanding their differential regulation in pathogenic conditions and the potential development of efficacious therapeutic strategies. Here, we summarize the recent literature on post-translational regulation of mitochondrial chaperones, the consequences for mitochondrial function, and potential implications for disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    全身皮肤检查(FBSE)是皮肤病学检查范围的一部分。因为这涉及敏感或“亲密”区域的检查,涉及许多道德问题。在这里,我们讨论筛查FBSE患者是否符合道德,是否符合分配正义的道德原则,如何在道德上对待我们的残疾患者,如何在道德上引导过去遭受过情感或身体创伤的患者,以及使用伴侣的道德后果。
    Full body skin examinations (FBSEs) are part of the purview of a dermatologic examination. Because this involves examination of sensitive or intimate areas, there are many ethical issues involved. Herein, we discuss whether screening patients with an FBSE is ethical and consistent with the ethical tenet of distributive justice, how to ethically deal with our patients with disabilities, how to ethically navigate patients who have been emotionally or physically traumatized in the past, and the ethical ramifications of the use of a chaperone.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号