centromere

着丝粒
  • 文章类型: Journal Article
    着丝粒配对对于减数分裂中的突触至关重要。本研究深入研究了Skp1-Cullin1-F-box蛋白(SCF)E3泛素连接酶复合物,特别关注F-box蛋白47(FBXO47),小鼠减数分裂。这里,我们发现,FBXO47位于着丝粒,它与SKP1协同调节着丝粒配对,以确保囊中的适当突触。缺乏FBXO47会导致着丝粒缺陷,导致着丝粒配对不完整,导致SC在着丝粒末端和沿着染色体轴的腐败,引发染色体过早解离和粗线质阻滞。FBXO47缺陷型粗线质精母细胞在着丝粒和染色体上的SKP1表达急剧下降。此外,FBXO47通过下调其在HEK293T细胞中的泛素化来稳定SKP1。实质上,我们建议FBXO47与SKP1合作促进精母细胞中着丝粒SCF的形成。总之,我们认为着丝粒SCFE3连接酶复合物调节着丝粒配对以促进小鼠的囊性进展。
    Centromere pairing is crucial for synapsis in meiosis. This study delves into the Skp1-Cullin1-F-box protein (SCF) E3 ubiquitin ligase complex, specifically focusing on F-box protein 47 (FBXO47), in mouse meiosis. Here, we revealed that FBXO47 is localized at the centromere and it regulates centromere pairing cooperatively with SKP1 to ensure proper synapsis in pachynema. The absence of FBXO47 causes defective centromeres, resulting in incomplete centromere pairing, which leads to corruption of SC at centromeric ends and along chromosome axes, triggering premature dissociation of chromosomes and pachytene arrest. FBXO47 deficient pachytene spermatocytes exhibited drastically reduced SKP1 expression at centromeres and chromosomes. Additionally, FBXO47 stabilizes SKP1 by down-regulating its ubiquitination in HEK293T cells. In essence, we propose that FBXO47 collaborates with SKP1 to facilitate centromeric SCF formation in spermatocytes. In summary, we posit that the centromeric SCF E3 ligase complex regulates centromere pairing for pachynema progression in mice.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    精确的染色体分离需要微管附着在着丝粒上,表观遗传学定义为CENP-A核小体的富集。在DNA复制过程中,CENP-A核小体经历稀释。为了保持着丝粒的身份,CENP-A的正确数量必须以Mis18复合物(Mis18α-Mis18β-Mis18BP1)协调的细胞周期控制方式恢复。我们在此证明,PLK1通过识别Mis18α(Ser54)和Mis18BP1(Thr78和Ser93)的自引发磷酸化通过其Polo-box结构域与Mis18复合物相互作用。破坏这些磷酸化会干扰CENP-A伴侣HJURP的着丝粒募集和新的CENP-A负载。生化和功能分析表明,激活Mis18α-Mis18β并促进Mis18复合物-HJURP相互作用需要Mis18α和PLK1结合的磷酸化。因此,我们的研究揭示了支持PLK1在确保着丝粒精确遗传中的许可作用的关键分子事件.
    Accurate chromosome segregation requires the attachment of microtubules to centromeres, epigenetically defined by the enrichment of CENP-A nucleosomes. During DNA replication, CENP-A nucleosomes undergo dilution. To preserve centromere identity, correct amounts of CENP-A must be restored in a cell cycle-controlled manner orchestrated by the Mis18 complex (Mis18α-Mis18β-Mis18BP1). We demonstrate here that PLK1 interacts with the Mis18 complex by recognizing self-primed phosphorylations of Mis18α (Ser54) and Mis18BP1 (Thr78 and Ser93) through its Polo-box domain. Disrupting these phosphorylations perturbed both centromere recruitment of the CENP-A chaperone HJURP and new CENP-A loading. Biochemical and functional analyses showed that phosphorylation of Mis18α and PLK1 binding were required to activate Mis18α-Mis18β and promote Mis18 complex-HJURP interaction. Thus, our study reveals key molecular events underpinning the licensing role of PLK1 in ensuring accurate centromere inheritance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    着丝粒,由组蛋白H3样蛋白着丝粒蛋白A(CENP-A)定义的染色体基因座,在细胞分裂过程中促进动粒的组装以结合微管。着丝粒维持需要CENP-A在细胞周期的早期G1期由专用蛋白质机制积极补充,以补偿其在DNA复制后的稀释。细胞周期蛋白依赖性激酶(CDK)将CENP-A沉积限制为每个细胞周期一次,并在早期G1之外充当负调节因子。相反,Polo样激酶1(PLK1)促进CENP-A在G1早期沉积,但该过程的分子细节仍未知。我们在这里揭示了一个磷酸化网络,该网络将PLK1招募到沉积机制中,以控制CENP-A沉积反应许可所需的构象转换。我们的发现阐明了PLK1如何有助于着丝粒的表观遗传维持。
    The centromere, a chromosome locus defined by the histone H3-like protein centromeric protein A (CENP-A), promotes assembly of the kinetochore to bind microtubules during cell division. Centromere maintenance requires CENP-A to be actively replenished by dedicated protein machinery in the early G1 phase of the cell cycle to compensate for its dilution after DNA replication. Cyclin-dependent kinases (CDKs) limit CENP-A deposition to once per cell cycle and function as negative regulators outside of early G1. Antithetically, Polo-like kinase 1 (PLK1) promotes CENP-A deposition in early G1, but the molecular details of this process are still unknown. We reveal here a phosphorylation network that recruits PLK1 to the deposition machinery to control a conformational switch required for licensing the CENP-A deposition reaction. Our findings clarify how PLK1 contributes to the epigenetic maintenance of centromeres.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    减数分裂是有性生殖的一个关键过程,细胞分裂过程中的错误会显著影响生育力。成功的减数分裂依赖于参与DNA复制的众多基因的协调作用,断线,随后重新加入。DNA拓扑异构酶通过调节DNA拓扑结构发挥着至关重要的作用,缓解复制和转录过程中的紧张。为了阐明DNA拓扑异构酶1α(AtTOP1α)在拟南芥雄性生殖发育中的特定功能,我们研究了拟南芥花蕾的减数分裂细胞分裂。结合细胞学和生化技术,我们的目的是揭示AtTOP1α对减数分裂的新贡献。我们的结果表明,缺乏AtTOP1α会导致减数分裂过程中的染色质行为异常。具体来说,top1α1突变体在减数分裂早期显示出改变的异染色质分布和聚集的着丝粒信号。此外,该突变体表现出45srDNA信号分布的破坏和中期I期间chiasma形成的频率降低,基因交换的关键阶段.此外,atm-2×top1α1双突变体表现出更严重的减数分裂缺陷,包括不完全的突触,DNA片段化,和polyads的存在。这些观察结果共同表明,AtTOP1α在确保减数分裂的准确进展中起着关键作用,促进同源染色体交叉形成,并可能在拟南芥小孢子母细胞中与突变的共通DNA修复途径中起作用。
    Meiosis is a critical process in sexual reproduction, and errors during this cell division can significantly impact fertility. Successful meiosis relies on the coordinated action of numerous genes involved in DNA replication, strand breaks, and subsequent rejoining. DNA topoisomerase enzymes play a vital role by regulating DNA topology, alleviating tension during replication and transcription. To elucidate the specific function of DNA topoisomerase 1α ( A t T O P 1 α ) in male reproductive development of Arabidopsis thaliana, we investigated meiotic cell division in Arabidopsis flower buds. Combining cytological and biochemical techniques, we aimed to reveal the novel contribution of A t T O P 1 α to meiosis. Our results demonstrate that the absence of A t T O P 1 α leads to aberrant chromatin behavior during meiotic division. Specifically, the top1α1 mutant displayed altered heterochromatin distribution and clustered centromere signals at early meiotic stages. Additionally, this mutant exhibited disruptions in the distribution of 45s rDNA signals and a reduced frequency of chiasma formation during metaphase I, a crucial stage for genetic exchange. Furthermore, the atm-2×top1α1 double mutant displayed even more severe meiotic defects, including incomplete synapsis, DNA fragmentation, and the presence of polyads. These observations collectively suggest that A t T O P 1 α plays a critical role in ensuring accurate meiotic progression, promoting homologous chromosome crossover formation, and potentially functioning in a shared DNA repair pathway with ATAXIA TELANGIECTASIA MUTATED (ATM) in Arabidopsis microspore mother cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    染色体紧实是有丝分裂的关键特征,对于准确的染色体分离至关重要。然而,在有丝分裂过程中缺乏对染色体几何结构的精确定量分析。这里,我们用体积电子显微镜来绘制,具有纳米精度,人类RPE1细胞中从前中期到晚期的染色体。在前中期,染色体获得更光滑的表面,他们的手臂缩短,形成了主要的着丝粒收缩。染色质逐渐压实,最终在前中期后期达到超过750µM的显着核小体浓度,在中期和后期早期保持相对恒定。令人惊讶的是,然后,在核被膜沉积之前,染色体在后期增加其体积。此处描述的从前中期晚期到后期后期的总染色体体积的平稳与有丝分裂中染色质凝聚的最后阶段涉及极限密度的提议一致,例如对于涉及相分离的过程可能预期的。
    Chromosome compaction is a key feature of mitosis and critical for accurate chromosome segregation. However, a precise quantitative analysis of chromosome geometry during mitotic progression is lacking. Here, we use volume electron microscopy to map, with nanometer precision, chromosomes from prometaphase through telophase in human RPE1 cells. During prometaphase, chromosomes acquire a smoother surface, their arms shorten, and the primary centromeric constriction is formed. The chromatin is progressively compacted, ultimately reaching a remarkable nucleosome concentration of over 750 µM in late prometaphase that remains relatively constant during metaphase and early anaphase. Surprisingly, chromosomes then increase their volume in late anaphase prior to deposition of the nuclear envelope. The plateau of total chromosome volume from late prometaphase through early anaphase described here is consistent with proposals that the final stages of chromatin condensation in mitosis involve a limit density, such as might be expected for a process involving phase separation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CDCA7,编码具有羧基末端富含半胱氨酸结构域(CRD)的蛋白质,在免疫缺陷中变异,着丝粒不稳定,面部畸形(ICF)综合征,一种与近核卫星DNA低甲基化有关的疾病。CDCA7如何将DNA甲基化引导到并聚体区域尚不清楚。这里,我们表明,CDCA7CRD采用独特的锌结合结构,可识别由两个序列基序形成的非BDNA中的CpG二元组。CDCA7,但不是ICF突变体,优先结合具有链特异性CpG半甲基化的非BDNA。未甲基化的序列基序在人类染色体的着丝粒高度富集,而甲基化基序分布在整个基因组中。在S阶段,CDCA7,但不是ICF突变体,集中在组成性异染色质病灶中,并且这种病灶的形成可以被CRD结合的外源半甲基化的非BDNA抑制。在DNA复制过程中在近核区域中形成的非BDNA的结合提供了CDCA7控制DNA甲基化特异性的机制。
    CDCA7, encoding a protein with a carboxyl-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs. CDCA7, but not ICF mutants, preferentially binds the non-B DNA with strand-specific CpG hemi-methylation. The unmethylated sequence motif is highly enriched at centromeres of human chromosomes, whereas the methylated motif is distributed throughout the genome. At S phase, CDCA7, but not ICF mutants, is concentrated in constitutive heterochromatin foci, and the formation of such foci can be inhibited by exogenous hemi-methylated non-B DNA bound by the CRD. Binding of the non-B DNA formed in juxtacentromeric regions during DNA replication provides a mechanism by which CDCA7 controls the specificity of DNA methylation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    完整基因组的组装可以揭示草图序列中缺失的功能遗传元件。在这里,我们介绍了棉花物种Gossypiumraimondii的接近完整的端粒到端粒和连续的基因组。我们的组装确定了以前组装中的间隙和错误定向或错误组装区域,并产生了13个着丝粒,有25个染色体末端有端粒。与富含卫星的拟南芥和水稻着丝粒相反,棉花着丝粒缺乏阶段性的CENH3核小体定位模式,可能是由长末端重复反转录转座子入侵而进化而来的。转座因子的深入表达谱揭示了以前未注释的DNA转座子(MuTC01),它与miR2947相互作用以产生反式作用的小干扰RNA(siRNA),其中一个靶向新进化的LEC2(LEC2b)来产生分阶段的siRNA。系统的基因组编辑实验表明,这个三方模块,miR2947-MuTC01-LEC2b,控制棉属及其近亲在棉花部落中的复杂折叠胚的形态发生。我们的研究揭示了高等植物胚胎发育的基于反式作用siRNA的三方调控途径。
    Assembly of complete genomes can reveal functional genetic elements missing from draft sequences. Here we present the near-complete telomere-to-telomere and contiguous genome of the cotton species Gossypium raimondii. Our assembly identified gaps and misoriented or misassembled regions in previous assemblies and produced 13 centromeres, with 25 chromosomal ends having telomeres. In contrast to satellite-rich Arabidopsis and rice centromeres, cotton centromeres lack phased CENH3 nucleosome positioning patterns and probably evolved by invasion from long terminal repeat retrotransposons. In-depth expression profiling of transposable elements revealed a previously unannotated DNA transposon (MuTC01) that interacts with miR2947 to produce trans-acting small interfering RNAs (siRNAs), one of which targets the newly evolved LEC2 (LEC2b) to produce phased siRNAs. Systematic genome editing experiments revealed that this tripartite module, miR2947-MuTC01-LEC2b, controls the morphogenesis of complex folded embryos characteristic of Gossypium and its close relatives in the cotton tribe. Our study reveals a trans-acting siRNA-based tripartite regulatory pathway for embryo development in higher plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    限制进化保守组蛋白H3变体CENP-A在着丝粒上的定位对于防止染色体不稳定性(CIN)至关重要,癌症的重要标志.过表达的CENP-A错误定位到非着丝粒区域,并有助于酵母中的CIN,苍蝇,和人类细胞。通过Mis18β与CENP-A特异性伴侣HJURP的相互作用促进CENP-A的着丝粒定位。Mis18β的细胞水平受含有β-转导蛋白重复序列的蛋白(β-TrCP)调节,SCF的F盒蛋白(Skp1,Cullin,F-box)E3-泛素连接酶复合物。这里,我们表明,β-TrCP介导的Mis18β蛋白水解缺陷有助于内源性CENP-A和CIN在三阴性乳腺癌(TNBC)细胞系中的位置错误。MDA-MB-231。CENP-A在β-TrCP耗竭细胞中的错误定位依赖于高水平的Mis18β,因为Mis18β的耗竭抑制CENP-A在这些细胞中的错误定位。与这些结果一致,内源性CENP-A在单独过表达Mis18β的细胞中定位错误。总之,我们的结果表明,β-TrCP介导的Mis18β降解可防止CENP-A和CIN的错位。我们认为Mis18β的表达失调可能是导致癌症染色体分离缺陷的关键机制之一。
    Restricting the localization of evolutionarily conserved histone H3 variant CENP-A to the centromere is essential to prevent chromosomal instability (CIN), an important hallmark of cancers. Overexpressed CENP-A mislocalizes to non-centromeric regions and contributes to CIN in yeast, flies, and human cells. Centromeric localization of CENP-A is facilitated by the interaction of Mis18β with CENP-A specific chaperone HJURP. Cellular levels of Mis18β are regulated by β-transducin repeat containing protein (β-TrCP), an F-box protein of SCF (Skp1, Cullin, F-box) E3-ubiquitin ligase complex. Here, we show that defects in β-TrCP-mediated proteolysis of Mis18β contributes to the mislocalization of endogenous CENP-A and CIN in a triple-negative breast cancer (TNBC) cell line, MDA-MB-231. CENP-A mislocalization in β-TrCP depleted cells is dependent on high levels of Mis18β as depletion of Mis18β suppresses mislocalization of CENP-A in these cells. Consistent with these results, endogenous CENP-A is mislocalized in cells overexpressing Mis18β alone. In summary, our results show that β-TrCP-mediated degradation of Mis18β prevents mislocalization of CENP-A and CIN. We propose that deregulated expression of Mis18β may be one of the key mechanisms that contributes to chromosome segregation defects in cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    真核染色体分离需要动子,在染色体着丝粒上组装并介导附着到动态纺锤体微管的多兆道尔顿蛋白质机器。Kinetochores是由许多复合体建造的,重组子组件的结构研究也取得了进展。然而,关于原生动体体系结构的结构信息有限。为了解决这个问题,我们纯化了功能,来自嗜热酵母马氏克鲁维酵母的天然动体,并通过电子显微镜(EM)对其进行了检查,低温电子断层显像(cryo-ET),和原子力显微镜(AFM)。动静脉非常大,具有与现有模型一致的特征的柔性组件。我们通过可视化它们与微管的相互作用并定位微管粘合剂来分配动粒极性,Ndc80c.这项工作表明,孤立的动车组比基于重组子组件的已知结构所预期的动态和复杂,并为在结构水平上研究动车组的整体结构和功能奠定了基础。
    Eukaryotic chromosome segregation requires kinetochores, multi-megadalton protein machines that assemble on the centromeres of chromosomes and mediate attachments to dynamic spindle microtubules. Kinetochores are built from numerous complexes, and there has been progress in structural studies on recombinant subassemblies. However, there is limited structural information on native kinetochore architecture. To address this, we purified functional, native kinetochores from the thermophilic yeast Kluyveromyces marxianus and examined them by electron microscopy (EM), cryoelectron tomography (cryo-ET), and atomic force microscopy (AFM). The kinetochores are extremely large, flexible assemblies that exhibit features consistent with prior models. We assigned kinetochore polarity by visualizing their interactions with microtubules and locating the microtubule binder, Ndc80c. This work shows that isolated kinetochores are more dynamic and complex than what might be anticipated based on the known structures of recombinant subassemblies and provides the foundation to study the global architecture and functions of kinetochores at a structural level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于着丝粒包含大量串联重复的卫星DNA,因此理解着丝粒在染色体进化和物种形成中的作用变得复杂。这阻碍了高质量的组装。这里,我们使用长读测序来生成四个核型不同的Papaver物种的几乎完整的基因组组装体,P.setigerum(2n=44),P.somniferum(2n=22),P.rhoeas(2n=14),和P.bracteatum(2n=14),共同代表45个无间隙中心粒。我们确定了四个着丝粒卫星(cenSat)家族,并通过实验验证了两个代表。对于两个异源多倍体基因组(P。SomniferumandP.setigerum),我们表征了每个卫星的亚基因组分布,并确定了杂交后着丝粒进化的“均质化”阶段。着丝粒周围区域的种间比较进一步揭示了广泛的着丝粒介导的染色体重排。把这些结果放在一起,我们提出了一个模型,用于研究杂交后的cenSat竞争,并进一步阐明了着丝粒在物种形成中的复杂作用。
    Understanding the roles played by centromeres in chromosome evolution and speciation is complicated by the fact that centromeres comprise large arrays of tandemly repeated satellite DNA, which hinders high-quality assembly. Here, we used long-read sequencing to generate nearly complete genome assemblies for four karyotypically diverse Papaver species, P. setigerum (2n = 44), P. somniferum (2n = 22), P. rhoeas (2n = 14), and P. bracteatum (2n = 14), collectively representing 45 gapless centromeres. We identified four centromere satellite (cenSat) families and experimentally validated two representatives. For the two allopolyploid genomes (P. somniferum and P. setigerum), we characterized the subgenomic distribution of each satellite and identified a \"homogenizing\" phase of centromere evolution in the aftermath of hybridization. An interspecies comparison of the peri-centromeric regions further revealed extensive centromere-mediated chromosome rearrangements. Taking these results together, we propose a model for studying cenSat competition after hybridization and shed further light on the complex role of the centromere in speciation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号