carbon dioxide reduction

减少二氧化碳
  • 文章类型: Journal Article
    一个简单的雾化喷雾系统旨在探索由不同气体(如二氧化碳)包围的水微滴中的二氧化碳(CO2)的氢化。氮,氧气,压缩空气。使用水抑制的核磁共振(NMR)分析收集的液滴。甲酸阴离子(HCOO-),乙酸根阴离子(CH3COO-),乙二醇(HOCH2CH2OH),和甲烷(CH4)在水被雾化时被检测到。当水被CO2饱和时,这种模式仍然存在,表明雾化气体中的CO2触发了这些小有机物的形成。在纯净的二氧化碳气氛中,甲酸阴离子浓度确定为≈70µm,提到二甲基亚砜,在收集的水滴中作为内标引入。这项研究强调了水微滴的力量,可以引发意想不到的化学反应,将二氧化碳转化为小的有机化合物。
    A straightforward nebulized spray system is designed to explore the hydrogenation of carbon dioxide (CO2) within water microdroplets surrounded by different gases such as carbon dioxide, nitrogen, oxygen, and compressed air. The collected droplets are analyzed using water-suppressed nuclear magnetic resonance (NMR). Formate anion (HCOO-), acetate anion (CH3COO-), ethylene glycol (HOCH2CH2OH), and methane (CH4) are detected when water is nebulized. This pattern persisted when the water is saturated with CO2, indicating that CO2 in the nebulizing gas triggers the formation of these small organics. In a pure CO2 atmosphere, the formate anion concentration is determined to be ≈70 µm, referenced to dimethyl sulfoxide, which has been introduced as an internal standard in the collected water droplets. This study highlights the power of water microdroplets to initiate unexpected chemistry for the transformation of CO2 to small organic compounds.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    分子催化剂代表了电化学二氧化碳还原(CO2RR)领域中的一类特殊材料,由于其适应性结构,提供了明显的优势,这使得电子配置的精确控制和卓越的性能在CO2RR。这项研究介绍了一种在水环境中的非均相电化学CO2RR的创新方法,利用通过二聚偶联反应产生的新合成的N4-大环钴配合物。通过掺入四吡啶部分,这种钴络合物表现出在低过电位下催化CO2RR的能力,并在宽的电位范围内达到接近单位的CO生产,经在线质谱和原位衰减全反射-傅里叶变换红外光谱验证。综合的计算模型证明了利用四吡啶部分介导CO2转化的优越性。这项工作不仅推动了电化学CO2RR领域的发展,而且强调了以四吡啶部分为特征的钴配合物在水环境中推进可持续CO2转化技术的潜力。
    Molecular catalysts represent an exceptional class of materials in the realm of electrochemical carbon dioxide reduction (CO2RR), offering distinct advantages owing to their adaptable structure, which enables precise control of electronic configurations and outstanding performance in CO2RR. This study introduces an innovative approach to heterogeneous electrochemical CO2RR in an aqueous environment, utilizing a newly synthesized N4-macrocyclic cobalt complex generated through a dimerization coupling reaction. By incorporating the quaterpyridine moiety, this cobalt complex exhibits the capability to catalyze CO2RR at low overpotentials and reaches near-unity CO production across a wide potential range, as verified by the online mass spectrometry and in situ attenuated total reflectance-Fourier transform infrared spectroscopy. Comprehensive computational models demonstrate the superiority of utilizing quarterpyridine moiety in mediating CO2 conversion compared to the counterpart. This work not only propels the field of electrochemical CO2RR but also underscores the promising potential of cobalt complexes featuring quaterpyridine moieties in advancing sustainable CO2 conversion technologies within aqueous environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    电催化二氧化碳还原反应(CO2RR)是利用可再生能源将CO2转化为增值产品的有效途径,其活性和选择性原则上可以通过调节催化位点附近的微环境来操纵。这里,通过学习天然叶绿素和血红素,我们展示了一种调整CO2RR微环境的策略。具体来说,通过哌嗪连接的导电共价有机骨架(COF)充当单原子催化剂(SAC)的通用载体,并且在COF上修饰的侧基可以容易地定制以提供用于可调谐微环境的不同推挽电子效应。因此,虽然所有的COF在苛刻的条件下表现出高的化学结构稳定性和良好的导电性,-CH2NH2的加入可以大大提高CO2RR的活性和选择性。经实验表征和理论模拟证明,给电子基团(-CH2NH2)不仅降低了COF的表面功函数,而且还提高了关键中间体*COOH的吸附能,与具有吸电子基团的COF(-CN,-COOH)靠近活跃地点。这项工作提供了在分子水平上对CO2RR电催化剂的微环境调制的见解。
    Electrocatalytic carbon dioxide reduction reaction (CO2RR) is an effective way of converting CO2 into value-added products using renewable energy, whose activity and selectivity can be in principle maneuvered by tuning the microenvironment near catalytic sites. Here, we demonstrate a strategy for tuning the microenvironment of CO2RR by learning from the natural chlorophyll and heme. Specifically, the conductive covalent organic frameworks (COFs) linked by piperazine serve as versatile supports for single-atom catalysts (SACs), and the pendant groups modified on the COFs can be readily tailored to offer different push-pull electronic effects for tunable microenvironment. As a result, while all the COFs exhibit high chemical structure stability under harsh conditions and good conductivity, the addition of -CH2NH2 can greatly enhance the activity and selectivity of CO2RR. As proven by experimental characterization and theoretical simulation, the electron-donating group (-CH2NH2) not only reduces the surface work function of COF, but also improves the adsorption energy of the key intermediate *COOH, compared with the COFs with electron-withdrawing groups (-CN, -COOH) near the active sites. This work provides insights into the microenvironment modulation of CO2RR electrocatalysts at the molecular level.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有效的光催化太阳能CO2还原提出了挑战,因为可见光到近红外(NIR)低能光子占太阳能的50%以上。因此,它们不能引发在CO2中解离C=O键所需的高能反应。在这项研究中,我们提出了一种利用经常未充分利用的光热(PTT)转换的新颖方法。我们独特的二维(2D)碳层嵌入的Mo2C(Mo2C-Cx)MXene催化剂在黑色中展示了优异的近红外(NIR)光吸收。这使得能够通过PTT转换机制有效利用低能光子,从而显著提高CO2光还原的速率。在集中的阳光下,最佳Mo2C-C0.5催化剂对CO的CO2还原反应速率为12000-15000μmol·g-1·h-1,对CH4的CO2还原反应速率为1000-3200μmol·g-1·h-1。值得注意的是,催化剂提供太阳能到碳燃料(STF)的转换效率在0.0108%至0.0143%之间,STFavg=0.0123%,自然阳光条件下的最高记录值。这种创新的方法强调了低频的开发,低能光子用于增强光催化CO2还原。
    Efficient photocatalytic solar CO2 reduction presents a challenge because visible-to-near-infrared (NIR) low-energy photons account for over 50% of solar energy. Consequently, they are unable to instigate the high-energy reaction necessary for dissociating C═O bonds in CO2. In this study, we present a novel methodology leveraging the often-underutilized photo-to-thermal (PTT) conversion. Our unique two-dimensional (2D) carbon layer-embedded Mo2C (Mo2C-Cx) MXene catalyst in black color showcases superior near-infrared (NIR) light absorption. This enables the efficient utilization of low-energy photons via the PTT conversion mechanism, thereby dramatically enhancing the rate of CO2 photoreduction. Under concentrated sunlight, the optimal Mo2C-C0.5 catalyst achieves CO2 reduction reaction rates of 12000-15000 μmol·g-1·h-1 to CO and 1000-3200 μmol·g-1·h-1 to CH4. Notably, the catalyst delivers solar-to-carbon fuel (STF) conversion efficiencies between 0.0108% to 0.0143% and the STFavg = 0.0123%, the highest recorded values under natural sunlight conditions. This innovative approach accentuates the exploitation of low-frequency, low-energy photons for the enhancement of photocatalytic CO2 reduction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在CO2电还原反应(CO2RR)中实现乙醇的高选择性仍然是一个巨大的挑战,因为其他可能的C2+产物具有相似的还原电位和较低的能障。这里,我们报告了一种基于MOF的负载型低核簇催化剂(LNCC),通过电化学还原三维(3D)微孔Cu基MOF合成,在-1.0V(相对于可逆氢电极)下实现82.5%的单产品法拉第效率(FE),对应于有效电流密度为8.66mAcm-2。通过研究还原产物的种类与催化位点类型之间的关系,证实了CuLNCCs的多位点协同作用可以增加C-C偶联效应,从而实现CO2-乙醇的高FE。此外,密度泛函理论(DFT)计算和操作衰减全反射表面增强红外吸收光谱进一步证实了CO2-EtOH的反应路径和机理。
    It is still a great challenge to achieve high selectivity of ethanol in CO2 electroreduction reactions (CO2RR) because of the similar reduction potentials and lower energy barrier of possible other C2+ products. Here, we report a MOF-based supported low-nuclearity cluster catalysts (LNCCs), synthesized by electrochemical reduction of three-dimensional (3D) microporous Cu-based MOF, that achieves a single-product Faradaic efficiency (FE) of 82.5 % at -1.0 V (versus the reversible hydrogen electrode) corresponding to the effective current density is 8.66 mA cm-2. By investigating the relationship between the species of reduction products and the types of catalytic sites, it is confirmed that the multi-site synergism of Cu LNCCs can increase the C-C coupling effect, and thus achieve high FE of CO2-to-ethanol. In addition, density functional theory (DFT) calculation and operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy further confirmed the reaction path and mechanism of CO2-to-EtOH.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发能够在宽的电势范围内实现从CO2到CH4的有效电化学转化的有效电催化剂仍然是一个艰巨的挑战。在这里,我们介绍了一种预催化策略,该策略实现了超细Cu2O纳米域的原位电化学重构,复杂耦合在CeO2表面(Cu2O/CeO2),源自由CeO2表面上的超细CuO纳米畴(CuO/CeO2)组成的异质界面。当用作电化学CO2还原反应的电催化剂时,Cu2O/CeO2在-1.2V至-1.7V的宽电位范围内对CH4的选择性高于49%RHE,保持可忽略的活性衰减20小时。值得注意的是,CH4的最高选择性在-1.5V时达到令人印象深刻的70%RHE.通过对包括同步加速器X射线吸收光谱在内的综合分析,球面像差校正大角度环形暗场扫描透射电子显微镜以及密度泛函理论计算,CH4的高效生产归因于Cu2O和CeO2之间的相干界面,这可以从原始的CuO和CeO2界面转化,确保丰富的活性位点并增强对CH4的内在活性和选择性。
    Developing an efficient electrocatalyst that enables the efficient electrochemical conversion from CO2 to CH4 across a wide potential range remains a formidable challenge. Herein, we introduce a precatalyst strategy that realizes the in situ electrochemical reconstruction of ultrafine Cu2O nanodomains, intricately coupled on the CeO2 surface (Cu2O/CeO2), originating from the heterointerface comprised of ultrafine CuO nanodomains on the CeO2 surface (CuO/CeO2). When served as the electrocatalyst for the electrochemical CO2 reduction reaction, Cu2O/CeO2 delivers a selectivity higher than 49 % towards CH4 over a broad potential range from -1.2 V to -1.7 V vs. RHE, maintaining negligible activity decay for 20 h. Notably, the highest selectivity for CH4 reaches an impressive 70 % at -1.5 V vs. RHE. Through the combination of comprehensive analysis including synchrotron X-ray absorption spectroscopy, spherical aberration-corrected high-angle annular dark field scanning transmission electron microscope as well as the density functional theoretical calculation, the efficient production of CH4 is attributed to the coherent interface between Cu2O and CeO2, which could converted from the original CuO and CeO2 interface, ensuring abundant active sites and enhanced intrinsic activity and selectivity towards CH4.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    应对全球气候变化挑战的最有希望的方法之一是电化学碳捕获和利用。固体电解质可以在建立用于电化学捕获CO2的无化学途径中起关键作用。此外,它们可以应用于电催化CO2还原反应(CO2RR)以提高碳利用率,生产高纯度液体化学品,并推进混合电生物系统。这篇综述文章首先介绍了电化学CO2捕集的基本原理和过程,强调利用固体电解质的优点。此外,它强调了使用固体聚合物电解质或固体电解质层用于具有多种功能的CO2RR的最新进展。该评论还探讨了未来研究的途径,以充分利用固体电解质的潜力,包括CO2捕集和CO2RR的集成以及在现实条件下的性能评估。最后,这篇综述讨论了未来的机遇和挑战,旨在通过电化学CO2增值为建立绿色和可持续发展的社会做出贡献。
    One of the most promising approaches to address the global challenge of climate change is electrochemical carbon capture and utilization. Solid electrolytes can play a crucial role in establishing a chemical-free pathway for the electrochemical capture of CO2. Furthermore, they can be applied in electrocatalytic CO2 reduction reactions (CO2RR) to increase carbon utilization, produce high-purity liquid chemicals, and advance hybrid electro-biosystems. This review article begins by covering the fundamentals and processes of electrochemical CO2 capture, emphasizing the advantages of utilizing solid electrolytes. Additionally, it highlights recent advancements in the use of the solid polymer electrolyte or solid electrolyte layer for the CO2RR with multiple functions. The review also explores avenues for future research to fully harness the potential of solid electrolytes, including the integration of CO2 capture and the CO2RR and performance assessment under realistic conditions. Finally, this review discusses future opportunities and challenges, aiming to contribute to the establishment of a green and sustainable society through electrochemical CO2 valorization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于将CO2转化为增值化学品或燃料的稳定和选择性电催化剂的开发在其减轻人为碳排放的潜力方面获得了极大的兴趣。大多数电催化剂都是在纯CO2下测试的;然而,工业出口烟气含有大量杂质,如NO和SO2,它们使电催化剂中毒并改变产物选择性。开发耐此类杂质的电催化剂对于商业实施是必不可少的。在这里,我们制备了双层多孔电催化剂,即,Sn,Bi,在,在多孔铜泡沫网上(Sn/Cu-f,Bi/Cu-f,和In/Cu-f)通过两步电沉积工艺,并使用这些电极将CO2电化学还原为甲酸盐。观察到,与涂覆在Cu网上的催化剂相比,双层多孔电催化剂表现出高的CO2还原活性。在双层多孔电催化剂中,Sn/Cu-f和Bi/Cu-f电催化剂对甲酸盐生产的法拉第效率(FE)超过80%,甲酸根部分电流密度分别约为-16和-10.4mAcm-2,在-1.02V对RHE。In/Cu-f电催化剂显示近40%的甲酸酯FE,在-1.22V与RHE的甲酸酯部分电流密度为-15mAcm-2。我们研究了NO和SO2杂质的影响(500ppm的NO,800ppm的SO2和500ppm的NO800ppm的SO2)在这些电催化剂上对甲酸盐的选择性和稳定性。观察到Bi/Cu-f电催化剂显示出50小时的稳定性,甲酸酯为80±5%,在NO和SO2与CO2混合的情况下,Sn/Cu-f显示出18h的稳定性,效率高于80±5%。此外,我们研究了在15-100%CO2范围内使用Sn/Cu-f和Bi/Cu-f催化剂对CO2浓度的影响,其中观察到甲酸FEs为45-80%。
    The development of stable and selective electrocatalysts for converting CO2 to value-added chemicals or fuels has gained much interest in terms of their potential to mitigate anthropogenic carbon emissions. Most of the electrocatalysts are tested under pure CO2; however, industrial outlet flue gas contains numerous impurities, such as NO and SO2, which poison the electrocatalysts and alter the product selectivity. Developing electrocatalysts that are resistant to such impurities is essential for commercial implementation. Herein, we prepared bilayer porous electrocatalysts, namely, Sn, Bi, and In, on porous Cu foam mesh (Sn/Cu-f, Bi/Cu-f, and In/Cu-f) by a two-step electrodeposition process and employed these electrodes for the electrochemical reduction of CO2 to formate. It was observed that the bilayer porous electrocatalysts exhibited high CO2 reduction activity compared to catalysts coated on a Cu mesh. Among bilayer porous electrocatalysts, Sn/Cu-f and Bi/Cu-f electrocatalysts showed more than 80% faradaic efficiency (FE) toward formate production, with a formate partial current density of around -16 and -10.4 mA cm-2, respectively, at -1.02 V vs RHE. In/Cu-f electrocatalyst showed nearly 40% formate FE with formate partial current density of -15 mA cm-2 at -1.22 V vs RHE. We investigated the effect of NO and SO2 impurities (500 ppm of NO, 800 ppm of SO2, and 500 ppm of NO + 800 ppm of SO2) on these electrocatalysts\' selectivity and stability toward formate. It was observed that the Bi/Cu-f electrocatalyst showed 50 h stability with 80 ± 5% formate FE, and Sn/Cu-f showed 18 h stability with above 80 ± 5% efficiency in the presence of NO and SO2 mixed with CO2. Furthermore, we studied the effect of CO2 concentration with Sn/Cu-f and Bi/Cu-f catalysts in the range of 15-100% CO2, for which formate FEs of 45-80% were observed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    产生合成气的电化学二氧化碳还原反应(eCO2RR)是CO2净还原的有吸引力的策略。然而,它的法拉第效率(FE)较差,选择性,和难以调制的氢/一氧化碳(H2/CO)比。为了解决这些问题,通过一步热解在氮掺杂的碳基体(MgNiX-NCDAC)上制备了一系列具有不同Ni含量的镁-镍(Mg-Ni)双原子催化剂。MgNi5-NC电催化剂在-0.6至-1.0V的电势范围内产生0.51-0.79H2/CO比可逆氢电极(RHE)和总FE达到100%,具有良好的稳定性。虽然在相同的过电位范围内,MgNi3-NC电催化剂实现了更宽的H2/CO范围(0.95-4.34),适用于典型的下游热化学反应。Ni物种的引入加速了CO的生成,然而,与基于Mg的单原子电催化剂相比,对H2产量的影响要小得多。根据实验结果和密度泛函理论(DFT)计算,Mg和Ni之间的协同效应达到了满意的结果,而不是各自履行自己的职责来选择性生产H2和CO,分别。这项工作介绍了在主族金属上开发原子催化剂以实现更可控的CO2RR的可行方法。
    Electrochemical carbon dioxide reduction reaction (eCO2RR) to generate syngas is an appealing strategy for CO2 net reduction. However, it suffers from the inferior faradaic efficiency (FE), selectivity, and difficult modulation of hydrogen/carbon monoxide (H2/CO) ratio. To address these issues, a series of magnesium-nickel (Mg-Ni) dual atomic catalysts with different Ni contents are fabricated on the nitrogen-doped carbon matrix (MgNiX-NC DACs) by one-step pyrolysis. MgNi5-NC electrocatalyst generates 0.51-0.79 H2/CO ratios in a potential range of -0.6 to -1.0 V vs. reversible hydrogen electrode (RHE) and the total FE reaches 100 % with good stability. While a wider range of H2/CO (0.95-4.34) is achieved for MgNi3-NC electrocatalyst in the same overpotential range, which is suitable for typical downstream thermochemical reactions. Introduction of Ni species accelerates the generation of CO, however, there is much less influence on the H2 production as compared with Mg-based single atomic electrocatalyst. According to the experimental results and density functional theory (DFT) calculations, the synergistic effect between Mg and Ni achieves the satisfied results rather than each one fulfill its own duty for selective producing H2 and CO, respectively. This work introduces a feasible approach to develop atomic catalysts on main group metal for more controllable CO2RR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    二氧化碳捕获和利用是摆脱化石C的战略技术。将CO2转化为燃料需要不能来自化石C的能量和氢气。在太阳辐射下,二氧化碳和水的共同处理将在碳回收和能源产品生产的长期过程中发挥关键作用。本文讨论了综合,两相复合光催化剂的表征与应用,In2O3@g-C3N4,由三聚氰胺在硝酸铟(III)存在下的热缩形成。复合材料表现出n,两个n型半导体之间的n异质结,g-C3N4和In2O3,导致更有效的电荷分离。该复合材料具有平带电位,使其能够有效地催化气相中CO2的还原以产生CO,CH4和CH3OH。虽然复合材料的整体光催化效率与纯g-C3N4相当,但其促进多电子转移和质子耦合电子转移(PCET)的能力表明,有可能进一步优化其性能。标记的13CO2的使用使我们能够清楚地排除还原物质源自光催化剂的分解或污染物的降解。
    Carbon dioxide capture and utilization is a strategic technology for moving away from fossil-C. The conversion of CO2 into fuels demands energy and hydrogen that cannot be sourced from fossil-C. Co-processing of CO2 and water under solar irradiation will have a key role in the long-term for carbon-recycling and energy products production. This article discusses the synthesis, characterization and application of the two-phase composite photocatalyst, In2O3@g-C3N4, formed by thermal condensation of melamine in the presence of indium(III)nitrate. The composite exhibits a n,n-heterojunction between two n-type semiconductors, g-C3N4 and In2O3, leading to a more efficient charge separation. The composite has a flat band potential enabling it to effectively catalyze the reduction of CO2 in the gas phase to produce CO, CH4 and CH3OH. While the composite\'s overall photocatalytic efficiency is comparable to that of neat g-C3N4, its ability to promote multielectron-transfer and Proton Coupled to Electron Transfer (PCET) suggests that there is a potential for further optimization of its properties. The use of labelled 13CO2 has allowed us to clearly exclude that the reduced species are derived from the photocatalyst decomposition or the degradation of contaminants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号