carbon dioxide fixation

二氧化碳固定
  • 文章类型: Journal Article
    世界人口当前的环境意识鼓励研究人员研究环境友好的新材料,并能够为所需的应用显示适当的功能。为了发展高性能,廉价的生态材料,科学家经常转向自然,试图以合理的价格模仿其流程的出色性能。在这方面,我们决定专注于藻酸(AA),一种广泛存在于褐藻中的多糖,和曲酸(KA),真菌产生的螯合剂。这项研究提出了快速合成一种可持续的,基于AA和KA的生物相容性材料(AK),使用氯氧酸(CKA)。该材料具有双重功能:对革兰氏阳性和革兰氏阴性细菌的抗菌活性,在体外对人细胞没有任何细胞毒性作用,以及在大气压下将CO2转化为环状碳酸酯的催化能力,没有溶剂,产量高,不使用金属。此外,该材料在有机溶剂中的不溶性使得它可以很容易地从反应产物中分离出来,并重新用于其他催化循环。这两种应用在医疗和环境领域都有关键作用,抗击感染的爆发,并提供一种创新的方法来将二氧化碳固定在特定的基质上。
    The current environmental consciousness of the world\'s population encourages researchers to work on new materials that are environmentally benign and able to display the appropriate features for the needed application. To develop high-performing, inexpensive eco-materials, scientists have frequently turned to nature, attempting to mimic its processes\' excellent performance at a reasonable price. In this regard, we decided to focus on alginic acid (AA), a polysaccharide widely found in brown algae, and kojic acid (KA), a chelating agent fungi produces. This study proposes rapidly synthesizing a sustainable, biocompatible material (AK) based on AA and KA, employing chlorokojic acid (CKA). The material has a dual function: antibacterial activity on both Gram-positive and Gram-negative bacteria, without any cytotoxic action on human cells in vitro, and catalytic ability to convert CO2 into cyclic carbonates at atmospheric pressure, without solvents, with high yields, and without the use of metals. Furthermore, the material\'s insolubility in organic solvents allows it to be easily separated from the reaction product and reused for other catalytic cycles. Both applications have a key role in the medical and environmental fields, combating the outbreak of infections and providing an innovative methodology to fix the CO2 on specific substrates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    我们引入了一类具有可调孔形态的新型气体扩散电极(GDE)。我们制造了含有碳填料的本征导电聚合物复合膜,通过薄膜浇铸和相分离方案实现孔结构变化。我们进一步通过NaBH4促进的涂覆策略用Cu选择性官能化膜的特定孔区域。获得的GDE可以促进在限定的导电孔系统内存在的Cu活性位点处的电化学CO2还原反应(CO2RR)。当将它们用作CO2流电解槽中的独立式阴极时,在高达200mA/cm2的情况下,我们为CO2RR产品实现了>70%的法拉第效率。我们进一步证明,在膜顶部沉积致密的Cu层导致下面的孔开口阻塞,抑制输送气态CO2的孔隙路径的过度润湿。然而,与在膜顶部的致密层中存在的Cu相比,在我们的新型膜电极的孔系统中存在的Cu将C2H4/CO选择性提高了3倍。此外,我们发现气态二氧化碳在被电解质润湿后仍然可以进入大孔中的铜,而CO2RR在湿润的纳米尺度孔隙中被完全抑制。
    We introduced a new class of gas diffusion electrodes (GDEs) with adjustable pore morphology. We fabricated intrinsically conductive polymer-composite membranes containing carbon filler, enabling a pore structure variation through film casting cum phase separation protocols. We further selectively functionalized specific pore regions of the membranes with Cu by a NaBH4-facilitated coating strategy. The as-obtained GDEs can facilitate the electrochemical CO2 reduction reaction (CO2RR) at Cu active sites that are presented inside a defined and electrically conductive pore system. When employing them as free-standing cathodes in a CO2 flow electrolyzer, we achieved >70% Faradaic efficiencies for CO2RR products at up to 200 mA/cm2. We further demonstrated that deposition of a dense Cu layer on top of the membrane leads to obstruction of the underlying pore openings, inhibiting an excessive wetting of the pore pathways that transport gaseous CO2. However, the presentation of Cu inside the pore system of our novel membrane electrodes increased the C2H4/CO selectivity by a factor of up to 3 compared to Cu presented in the dense layer on top of the membrane. Additionally, we found that gaseous CO2 could still access Cu in macropores after wetting with electrolyte, while CO2RR was completely suppressed in wetted nm-scale pores.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    工业化的快速发展导致了许多有害的环境后果,包括水污染和全球变暖。因此,迫切需要设计适当的材料来应对这些挑战。离子多孔有机聚合物(iPOP)已成为有前途的含氧阴离子隔离和非氧化还原CO2固定材料。值得注意的是,iPOPs提供水热稳定性,结构可调性,一个收费的框架,和容易获得的亲核抗衡阴离子。这篇综述探讨了毛孔和带电功能的重要性以及现有文献中概述的设计策略,主要集中于将吡啶鎓和咪唑鎓单元掺入富氮iPOPs中,以进行含氧阴离子固存和非氧化还原CO2固定。本次审查还讨论了当前的挑战和未来的前景,描述用于水处理和多相催化的创新iPOPs的设计和开发。
    The rapid pace of industrialization has led to a multitude of detrimental environmental consequences, including water pollution and global warming. Consequently, there is an urgent need to devise appropriate materials to address these challenges. Ionic porous organic polymers (iPOPs) have emerged as promising materials for oxoanion sequestration and non-redox CO2 fixation. Notably, iPOPs offer hydrothermal stability, structural tunability, a charged framework, and readily available nucleophilic counteranions. This review explores the significance of pores and charged functionalities alongside design strategies outlined in existing literature, mainly focusing on the incorporation of pyridinium and imidazolium units into nitrogen-rich iPOPs for oxoanion sequestration and non-redox CO2 fixation. The present review also addresses the current challenges and future prospects, delineating the design and development of innovative iPOPs for water treatment and heterogeneous catalysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已知铁卟啉在光化学反应中提供作为CO2的八电子还原产物的CH4。然而,反应机制的某些方面仍不清楚。在这项研究中,我们合成了铁卟啉二聚体,并进行了光化学CO2还原反应,在1,3-二甲基-2-苯基-2,3-二氢-1H-苯并[d]咪唑(BIH)作为电子给体的存在下,含有光敏剂的N-二甲基乙酰胺(DMA)。我们发现,尽管催化周转数较低,只有当这些卟啉彼此面对时,才会产生CH4。环状二聚体的紧密接近,将它们与线性铁卟啉二聚体和单体区分开来,诱导多电子CO2还原,强调其结构排列在CH4形成中的独特作用。
    Iron porphyrins are known to provide CH4 as an eight-electron reduction product of CO2 in a photochemical reaction. However, there are still some aspects of the reaction mechanism that remain unclear. In this study, we synthesized iron porphyrin dimers and carried out the photochemical CO2 reduction reactions in N,N-dimethylacetamide (DMA) containing a photosensitizer in the presence of 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole (BIH) as an electron donor. We found that, despite a low catalytic turnover number, CH4 was produced only when these porphyrins were facing each other. The close proximity of the cyclic dimers, distinguishing them from a linear Fe porphyrin dimer and monomers, induced multi-electron CO2 reduction, emphasizing the unique role of their structural arrangement in CH4 formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    将CO2催化转化为增值化工产品可以为环境问题的提出提供合适的解决方案。迄今为止,已经探索了具有过渡金属离子的各种金属有机骨架(MOFs)用于CO2捕获和转化,但碱土金属基MOFs的研究相对较少。具有相对大半径的金属离子如Sr(II)产生高配位数,导致MOF的更高稳定性。此外,在有机接头如-NH2、-CONH-和三唑中引入富含N的官能团到MOF主链中增强了它们的CO2捕获和转化效率。在这里,提出了在无溶剂和环境条件下,胺基对MOFs与环氧化物进行CO2环加成的催化效率的影响。二羧酸盐,例如5-氨基间苯二甲酸酯(AmIP)和5-溴间苯二甲酸酯(BrIP)用于合成基于Sr(II)的MOF。使用含有酰胺间隔基(OAT)和4-氨基-4H-1,2,4-三唑(AMT)的四羧酸酯合成Zn(II)MOF。所有三个MOF均表现出多孔网络,客人可用体积范围为15%至58%。探索了MOFs对二氧化碳固定反应的催化效率。催化性能表明,通道中胺基的存在增强了MOF的催化效率。
    Catalytic transformation of CO2 into value-added chemical products can provide an appropriate solution for the raising environmental issues. To date, various metal-organic frameworks (MOFs) with transition metal ions have been explored for CO2 capture and conversion, but alkaline earth metal-based MOFs are comparatively less studied. Metal ions like Sr(II) having relatively large radius give rise to a high coordination number resulting in higher stability of the MOFs. Moreover, the introduction of N-rich functional group in organic linker like -NH2, -CONH- and triazole into MOF backbone enhance their CO2 capture and conversion efficiency. Herein, the effect of amine group on the catalytic efficiency of MOFs for CO2 cycloaddition with epoxides under solvent free and ambient conditions are presented. The di-carboxylates, such as 5-aminoisophthalate (AmIP) and 5-bromoisophthalate (BrIP) were utilized to synthesize Sr(II) based MOFs. The Zn(II) MOF was synthesized using tetra-carboxylate containing amide spacer (OAT) and 4-amino-4H-1,2,4-triazole (AMT). All three MOFs exhibited porous networks with guest available volume ranging from 15 to 58 %. The catalytic efficiency of the MOFs towards carbon dioxide fixation reaction was explored. The catalytic performances revealed that the presence of amine group in the channels enhances the catalytic efficiency of the MOFs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fmicb.202.872708。].
    [This corrects the article DOI: 10.3389/fmicb.2022.872708.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    CO2和硝酸盐的电化学还原为通过使用温室气体和含氮废水生产有价值的化学品提供了有希望的途径。然而,通常提出的用于尿素合成的同时CO2和硝酸盐还原的反应途径要求催化剂在CO2和硝酸盐还原中都有效。从而缩小了合适催化剂的选择范围。在这里,我们证明了尿素合成的独特机制,串联的NO3-和CO2还原,其中通过硝酸盐还原产生的表面氨基物种起捕获游离CO2并随后引发其活化的作用。当使用源自MIL-125-NH2的TiO2电催化剂时,它在水溶液CO2还原中固有地表现出低活性,然而,在硝酸盐和CO2的存在下,该催化剂实现了43.37mmol·g-1·h-1的优异尿素产率和-0.9V时48.88%的法拉第效率流动池中的RHE。即使在15%的低二氧化碳水平,尿素合成的法拉第效率保持在42.33%。串联还原过程通过原位光谱学和理论计算得到进一步证实。这项研究为尿素合成电催化剂的选择和设计提供了新的见解。
    Electrochemical reduction of CO2 and nitrate offers a promising avenue to produce valuable chemicals through the using of greenhouse gas and nitrogen-containing wastewater. However, the generally proposed reaction pathway of concurrent CO2 and nitrate reduction for urea synthesis requires the catalysts to be both efficient in both CO2 and nitrate reduction, thus narrowing the selection range of suitable catalysts. Herein, we demonstrate a distinct mechanism in urea synthesis, a tandem NO3 - and CO2 reduction, in which the surface amino species generated by nitrate reduction play the role to capture free CO2 and subsequent initiate its activation. When using the TiO2 electrocatalyst derived from MIL-125-NH2, it intrinsically exhibits low activity in aqueous CO2 reduction, however, in the presence of both nitrate and CO2, this catalyst achieves an excellent urea yield rate of 43.37 mmol ⋅ g-1 ⋅ h-1 and a Faradaic efficiency of 48.88 % at -0.9 V vs. RHE in a flow cell. Even at a low CO2 level of 15 %, the Faradaic efficiency of urea synthesis remains robust at 42.33 %. The tandem reduction procedure was further confirmed by in situ spectroscopies and theoretical calculations. This research provides new insights into the selection and design of electrocatalysts for urea synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钙钛矿CsPbBr3量子点在人工光合作用中显示出巨大的潜力,归因于其出色的光电性能。然而,其光催化活性受到催化活性位点不足和严重的电荷复合的阻碍。在这项工作中,设计并合成了CsPbBr3@Ag-C3N4三元异质结光催化剂,用于高效还原CO2。将CsPbBr3量子点和Ag纳米粒子化学锚定在g-C3N4片表面,通过g-C3N4片形成从CsPbBr3量子点到Ag纳米颗粒的电子转移隧道。所得CsPbBr3@Ag-C3N4三元光催化剂,随着光生载流子的空间分离,实现了19.49μmol·g-1·h-1的显著转化率,几乎100%的CO选择性,与CsPbBr3量子点相比,光催化活性提高了3.13倍。密度泛函理论计算表明,与g-C3N4相比,在Ag纳米颗粒和g-C3N4的界面处形成的*COOH的快速CO2吸附/活化和降低的自由能(0.66eV),从而具有优异的光催化活性,而热力学上有利的CO解吸有助于高CO选择性。这项工作提出了通过调节催化剂结构来构建钙钛矿型光催化剂的创新策略,并为有效的CO2转化提供了深刻的见解。
    Perovskite CsPbBr3 quantum dot shows great potential in artificial photosynthesis, attributed to its outstanding optoelectronic properties. Nevertheless, its photocatalytic activity is hindered by insufficient catalytic active sites and severe charge recombination. In this work, a CsPbBr3@Ag-C3N4 ternary heterojunction photocatalyst is designed and synthesized for high-efficiency CO2 reduction. The CsPbBr3 quantum dots and Ag nanoparticles are chemically anchored on the surface of g-C3N4 sheets, forming an electron transfer tunnel from CsPbBr3 quantum dots to Ag nanoparticles via g-C3N4 sheets. The resulting CsPbBr3@Ag-C3N4 ternary photocatalyst, with spatial separation of photogenerated carriers, achieves a remarkable conversion rate of 19.49 μmol·g-1·h-1 with almost 100 % CO selectivity, a 3.13-fold enhancement in photocatalytic activity as compared to CsPbBr3 quantum dots. Density functional theory calculations reveal the rapid CO2 adsorption/activation and the decreased free energy (0.66 eV) of *COOH formation at the interface of Ag nanoparticles and g-C3N4 in contrast to the g-C3N4, leading to the excellent photocatalytic activity, while the thermodynamically favored CO desorption contributes to the high CO selectivity. This work presents an innovative strategy of constructing perovskite-based photocatalyst by modulating catalyst structure and offers profound insights for efficient CO2 conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    传统酸浸回收废旧锂离子电池受到严重污染的限制,复杂的技术,和Li2CO3的低纯度。针对传统酸浸工艺存在的问题和脱碳需求不断增加的问题,开发了一种通过不含酸或碱的简单浓缩沉淀法选择性碳化浸出Li和回收电池级Li2CO3的技术。CO2和还原剂的耦合可以通过降低过渡金属所需的还原能力和降低溶液的pH来有效地促进MCO3(M=Ni/Co/Mn)的沉淀和Li的选择性浸出。在1MPaCO2和20g/LNa2S2O3的条件下,L/S比为30mL/g,持续1.5h,获得了Li的最佳选择性浸出工艺。FT-IR,XRD,采用ICP-MS等方法揭示了层状正极材料碳化还原的多相界面反应机理,这表明还原剂Na2S2O3可以促进正极材料的晶格畸变和Li的有效分离。总之,提出了一种在近中性环境中使用一步CO2碳酸化回收方法选择性回收电池级Li2CO3的绿色经济方法。
    The recovery of spent lithium-ion batteries by traditional acid leaching is limited by serious pollution, complicated technology, and the low purity of Li2CO3. To address the problems of the traditional acid leaching process and increasing demand for decarbonization, a technique for the selective carbonation leaching of Li and the recovery of battery-grade Li2CO3 by a simple concentration precipitation process without acids or bases was developed. The coupling of CO2 and reducing agents could effectively promote the precipitation of MCO3 (M=Ni/Co/Mn) and the selective leaching of Li by decreasing the reducing capability needed for transition metals and decreasing the pH of the solution. The optimal selective leaching process of Li was obtained under 1 MPa CO2 with 20 g/L Na2S2O3 at an L/S ratio of 30 mL/g for 1.5 h. FT-IR, XRD, ICP-MS and other methods were used to reveal the multiphase interfacial reaction mechanism of the carbonation reduction of layered cathode materials, which indicated that the reducing agent Na2S2O3 could promote lattice distortion of the cathode materials and effective separation of Li. In summary, a green and economical method for the selective recovery of battery-grade Li2CO3 using a one-step method of CO2 carbonation recovery in a near-neutral environment was proposed.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    CO2还原和H2O氧化的不匹配反应动力学是限制CO2整体光催化转化的主要障碍。这里,熔盐策略用于构建具有更多吸附位点和更强活化能力的管状三嗪基氮化碳(TCN)。然后使Ni(OH)2纳米片在TCN上生长,以触发质子耦合的电子转移,从而通过“3CO22H2O=CH42CO3O2进行化学计量的总光催化CO2转化。“TCN降低了H2O解离的能垒,以促进H2O氧化为O2,并为Ni(OH)2提供足够的质子,由此,由于由来自TCN的充足质子供应实现的增强的质子耦合电子转移过程,CO2转化被加速。这项工作强调了通过质子耦合的电子转移将CO2还原和H2O氧化的反应动力学与化学计量的总光催化CO2转化相匹配的重要性。
    Mismatched reaction kinetics of CO2 reduction and H2O oxidation is the main obstacle limiting the overall photocatalytic CO2 conversion. Here, a molten salt strategy is used to construct tubular triazine-based carbon nitride (TCN) with more adsorption sites and stronger activation capability. Ni(OH)2 nanosheets are then grown over the TCN to trigger a proton-coupled electron transfer for a stoichiometric overall photocatalytic CO2 conversion via \"3CO2 + 2H2O = CH4 + 2CO + 3O2.\" TCN reduces the energy barrier of H2O dissociation to promote H2O oxidation to O2 and supply sufficient protons to Ni(OH)2, whereby the CO2 conversion is accelerated due to the enhanced proton-coupled electron transfer process enabled by the sufficient proton supply from TCN. This work highlights the importance of matching the reaction kinetics of CO2 reduction and H2O oxidation by proton-coupled electron transfer on stoichiometric overall photocatalytic CO2 conversion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号