calpain–cathepsin hypothesis

  • 文章类型: Journal Article
    自噬介导溶酶体内细胞内大分子和细胞器的降解。有三种类型的自噬:巨自噬,微自噬,和伴侣介导的自噬。热休克蛋白70.1(Hsp70.1)具有伴侣蛋白和溶酶体膜稳定剂的双重功能。由于伴侣介导的自噬参与了~30%的细胞溶质蛋白的再循环,它的紊乱导致细胞对应激条件的易感性。预定用于降解的货物蛋白如淀粉样蛋白前体蛋白和tau蛋白通过Hsp70.1从胞质溶胶运输到溶酶体中。Hsp70.1由N末端核苷酸结合域(NBD)和与货物蛋白结合的C末端域组成,称为底物结合结构域(SBD)。NBD和SBD通过域间接头LL1连接,其响应于ADP/ATP结合而调节Hsp70.1的变构结构。Hsp70.1货物复合物通过溶酶体限制膜后,带正电荷的SBD与带负电荷的双(单酰基甘油)磷酸盐(BMP)在内囊泡膜上的高亲和力结合激活了酸性鞘磷脂酶,以产生神经酰胺来稳定溶酶体膜。由于溶酶体限制膜的完整性对于确保酸性腔内货物蛋白降解至关重要,溶酶体限制膜的崩解对细胞是致命的。摄入高脂肪饮食后,然而,线粒体中脂肪酸的β氧化产生活性氧,其增强膜亚油酸的氧化以产生4-羟基-2-壬烯醛(4-HNE)。此外,4-HNE是在加热富含亚油酸的植物油过程中产生的,并通过油炸食品掺入体内。这种内源性和外源性4-HNE协同导致其血清和器官水平的增加,从而在Arg469处诱导Hsp70.1的羰基化,这有助于其构象变化和活化的μ-钙蛋白酶进入LL1。因此,Hsp70.1的裂解发生在其流入溶酶体腔之前,这导致溶酶体膜透化/破裂。组织蛋白酶的泄漏导致溶酶体细胞死亡,这将是生活方式相关疾病的致病因素之一。
    Autophagy mediates the degradation of intracellular macromolecules and organelles within lysosomes. There are three types of autophagy: macroautophagy, microautophagy, and chaperone-mediated autophagy. Heat shock protein 70.1 (Hsp70.1) exhibits dual functions as a chaperone protein and a lysosomal membrane stabilizer. Since chaperone-mediated autophagy participates in the recycling of ∼30% cytosolic proteins, its disorder causes cell susceptibility to stress conditions. Cargo proteins destined for degradation such as amyloid precursor protein and tau protein are trafficked by Hsp70.1 from the cytosol into lysosomes. Hsp70.1 is composed of an N-terminal nucleotide-binding domain (NBD) and a C-terminal domain that binds to cargo proteins, termed the substrate-binding domain (SBD). The NBD and SBD are connected by the interdomain linker LL1, which modulates the allosteric structure of Hsp70.1 in response to ADP/ATP binding. After the passage of the Hsp70.1-cargo complex through the lysosomal limiting membrane, high-affinity binding of the positive-charged SBD with negative-charged bis(monoacylglycero)phosphate (BMP) at the internal vesicular membranes activates acid sphingomyelinase to generate ceramide for stabilizing lysosomal membranes. As the integrity of the lysosomal limiting membrane is critical to ensure cargo protein degradation within the acidic lumen, the disintegration of the lysosomal limiting membrane is lethal to cells. After the intake of high-fat diets, however, β-oxidation of fatty acids in the mitochondria generates reactive oxygen species, which enhance the oxidation of membrane linoleic acids to produce 4-hydroxy-2-nonenal (4-HNE). In addition, 4-HNE is produced during the heating of linoleic acid-rich vegetable oils and incorporated into the body via deep-fried foods. This endogenous and exogenous 4-HNE synergically causes an increase in its serum and organ levels to induce carbonylation of Hsp70.1 at Arg469, which facilitates its conformational change and access of activated μ-calpain to LL1. Therefore, the cleavage of Hsp70.1 occurs prior to its influx into the lysosomal lumen, which leads to lysosomal membrane permeabilization/rupture. The resultant leakage of cathepsins is responsible for lysosomal cell death, which would be one of the causative factors of lifestyle-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    乙醛脱氢酶2(ALDH2)是一种线粒体酶,可通过脂质过氧化产物的解毒来减少细胞损伤,4-羟基-2-壬烯醛(羟基壬烯醛)。它是通过油炸富含亚油酸的食用油而外源产生的和/或通过氧化参与生物膜的脂肪酸而内源产生的。虽然其对人体健康的毒性被广泛接受,潜在的机制长期以来仍然未知。1998年,山岛等人。已将“钙蛋白酶-组织蛋白酶假说”表述为缺血性神经元死亡的分子机制。随后,他们发现钙蛋白酶可以裂解Hsp70.1,Hsp70.1在关键位点Arg469被羟基壬烯醛诱导的羰基化作用后变得脆弱.由于是引起溶酶体膜破裂的关键畸变,他们认为,阿尔茨海默病的神经元死亡类似地发生于慢性缺血,通过由羟基壬烯醛触发的钙蛋白酶-组织蛋白酶级联反应。近三十年来,淀粉样β(Aβ)肽被认为是阿尔茨海默病的根源物质。然而,由于Aβ沉积与神经元死亡或痴呆的发生之间的相关性不明显,以及迄今为止在阿尔茨海默病患者中测试的抗Aβ药物的阴性结果,“淀粉样蛋白级联假说”的强度已被削弱。最近的研究表明,羟基壬烯醛不仅在大脑中是程序性细胞死亡的介质,而且在肝脏中,胰腺,心,等。羟基壬烯醛的增加被认为是阿尔茨海默病发展的早期事件。这篇评论旨在提出走出隧道的方法,关注羟基壬烯醛在这种疾病中的意义。在这里,通过关注具有伴侣蛋白和溶酶体稳定剂双重功能的Hsp70.1,讨论了阿尔茨海默神经元死亡的机制。我们认为Aβ不是阿尔茨海默病的罪魁祸首,但仅仅是由羟基壬烯醛诱导的Hsp70.1疾病引起的自噬/溶酶体衰竭的副产物。增强ALDH2活性以解毒羟基壬烯醛成为预防和治疗阿尔茨海默病的有希望的策略。
    Aldehyde dehydrogenase 2 (ALDH2) is a mitochondrial enzyme that reduces cell injuries via detoxification of lipid-peroxidation product, 4-hydroxy-2-nonenal (hydroxynonenal). It is generated exogenously via deep-frying of linoleic acid-rich cooking oils and/or endogenously via oxidation of fatty acids involved in biomembranes. Although its toxicity for human health is widely accepted, the underlying mechanism long remained unknown. In 1998, Yamashima et al. have formulated the \"calpain-cathepsin hypothesis\" as a molecular mechanism of ischemic neuronal death. Subsequently, they found that calpain cleaves Hsp70.1 which became vulnerable after the hydroxynonenal-induced carbonylation at the key site Arg469. Since it is the pivotal aberration that induces lysosomal membrane rupture, they suggested that neuronal death in Alzheimer\'s disease similarly occurs by chronic ischemia via the calpain-cathepsin cascade triggered by hydroxynonenal. For nearly three decades, amyloid β (Aβ) peptide was thought to be a root substance of Alzheimer\'s disease. However, because of both the insignificant correlations between Aβ depositions and occurrence of neuronal death or dementia, and the negative results of anti-Aβ medicines tested so far in the patients with Alzheimer\'s disease, the strength of the \"amyloid cascade hypothesis\" has been weakened. Recent works have suggested that hydroxynonenal is a mediator of programmed cell death not only in the brain, but also in the liver, pancreas, heart, etc. Increment of hydroxynonenal was considered an early event in the development of Alzheimer\'s disease. This review aims at suggesting ways out of the tunnel, focusing on the implication of hydroxynonenal in this disease. Herein, the mechanism of Alzheimer neuronal death is discussed by focusing on Hsp70.1 with a dual function as chaperone protein and lysosomal stabilizer. We suggest that Aβ is not a culprit of Alzheimer\'s disease, but merely a byproduct of autophagy/lysosomal failure resulting from hydroxynonenal-induced Hsp70.1 disorder. Enhancing ALDH2 activity to detoxify hydroxynonenal emerges as a promising strategy for preventing and treating Alzheimer\'s disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号