cabbage white butterfly

  • 文章类型: Journal Article
    幼虫寄主植物质量与温度之间的相互作用会影响食草动物的短期生理速率和生活史特征。这些因素可以在局部变化,导致局部适应饮食和温度,但是很少进行群体之间这些相互作用的比较。在这项研究中,我们研究人工饮食的大量营养素比例如何决定幼虫的生长,发展,以及来自不同气候区的两个入侵北美种群在不同温度下的幼体菜鸟(鳞翅目:Pieridae)的存活。我们用三种温度处理(18°C,25°C,和32°C)和三种人工饮食处理在蛋白质与碳水化合物的比例方面有所不同(低蛋白,平衡,和高蛋白)。在较低的温度下,饮食对生活史特征的影响更大,但是这些在不同的人群之间是不同的。在低温处理下,亚热带种群的幼虫在低蛋白饮食下的成活率降低,而温带种群的幼虫存活率在所有温度和饮食治疗中都同样高。总的来说,这两个群体的表现都更差(即,他们表现出较慢的消费率,增长,和发展,并且在饮食中具有较小的p质量),蛋白质比例低,但是在所有温度下,温带种群的幼虫对饮食比例变化的敏感性较低。我们的结果证实,昆虫食草动物营养不平衡的生理和生活史后果可能取决于发育温度,北美不同地理种群对营养平衡和温度的敏感性不同。
    The interaction between larval host plant quality and temperature can influence the short-term physiological rates and life-history traits of insect herbivores. These factors can vary locally, resulting in local adaptation in responses to diet and temperature, but the comparison of these interactions between populations is infrequently carried out. In this study, we examine how the macronutrient ratio of an artificial diet determines the larval growth, development, and survival of larval Pieris rapae (Lepidoptera: Pieridae) at different temperatures between two invasive North American populations from different climatic regions. We conducted a fully factorial experiment with three temperature treatments (18°C, 25°C, and 32°C) and three artificial diet treatments varying in terms of the ratio of protein to carbohydrate (low protein, balanced, and high protein). The effects of diet on life-history traits were greater at lower temperatures, but these differed between populations. Larvae from the subtropical population had reduced survival to pupation on the low-protein diet in the cold temperature treatment, whereas larval survival for the temperate population was equally high for all temperature and diet treatments. Overall, both populations performed more poorly (i.e., they showed slower rates of consumption, growth, and development, and had a smaller pupal mass) in the diet with the low protein ratio, but larvae from the temperate population were less sensitive to diet ratio changes at all temperatures. Our results confirm that the physiological and life-history consequences of imbalanced nutrition for insect herbivores may depend on developmental temperatures, and that different geographic populations of P. rapae within North America vary in their sensitivity to nutritional balance and temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    对昆虫的植物识别的知识在很大程度上限于针对吸汁昆虫的一些抗性(R)基因。超敏反应(HR)表征了几种病理性系统中依赖于R基因的单基因植物性状。类似HR的细胞死亡可以由卷心菜白蝴蝶的卵触发(Pierisspp。),卷心菜作物的害虫(芸苔属。),在摄食损害发生之前,降低卵的存活率并代表有效的植物抗性性状。这里,我们对黑芥菜中的菜青虫卵诱导的HR样细胞死亡进行了遗传定位(B.nigra).我们表明,HR样细胞死亡分离为孟德尔性状,并在B3号染色体上确定了一个显性基因座,称为PEK(Pieriseg-killing)。11个基因位于大约50kb的区域,包括编码细胞内TIR-NBS-LRR(TNL)受体蛋白的基因簇。PEK基因座在我们作图种群的亲本种质之间以及黑芽孢杆菌参考基因组之间具有高度多态性。我们的研究是第一个鉴定出可能参与黑芽孢杆菌昆虫卵诱导的HR样细胞死亡的单个基因座的研究。进一步精细映射,比较基因组学和PEK基因座的验证将揭示这些TNL受体在杀卵HR中的作用。
    Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris  egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Research on insect microbiota has greatly expanded over the past decade, along with a growing appreciation of the microbial contributions to insect ecology and evolution. Many of these studies use DNA sequencing to characterize the diversity and composition of insect-associated microbial communities. The choice of strategies used for specimen collection, storage, and handling could introduce biases in molecular assessments of insect microbiota, but such potential influences have not been systematically evaluated. Likewise, although it is common practice to surface sterilize insects prior to DNA extraction, it is not known if this time-consuming step has any effect on microbial community analyses. To resolve these methodological unknowns, we conducted an experiment wherein replicate individual insects of four species were stored intact for two months using five different methods-freezing, ethanol, dimethyl sulfoxide (DMSO), cetrimonium bromide (CTAB), and room-temperature storage without preservative-and then subjected to whole-specimen 16S rRNA gene sequencing to assess whether the structure of the insect-associated bacterial communities was impacted by these different storage strategies. Overall, different insect species harbored markedly distinct bacterial communities, a pattern that was highly robust to the method used to store samples. Storage method had little to no effect on assessments of microbiota composition, and the magnitude of the effect differed among the insect species examined. No single method emerged as \"best,\" i.e., one consistently having the highest similarity in community structure to control specimens, which were not stored prior to homogenization and DNA sequencing. We also found that surface sterilization did not change bacterial community structure as compared to unsterilized insects, presumably due to the vastly greater microbial biomass inside the insect body relative to its surface. We therefore recommend that researchers can use any of the methods tested here, and base their choice according to practical considerations such as prior use, cost, and availability in the field, although we still advise that all samples within a study be handled in an identical manner when possible. We also suggest that, in large-scale molecular studies of hundreds of insect specimens, surface sterilization may not be worth the time and effort involved. This information should help researchers design sampling strategies and will facilitate cross-comparisons and meta-analyses of microbial community data obtained from insect specimens preserved in different ways.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号