bis-(1,3-dibutylbarbituric acid) trimethine oxonol-DiBAC

双 - (1, 3 - 二丁基巴比妥酸) 三甲基氧杂单醇 - DiBAC
  • 文章类型: Journal Article
    肠道微生物在新陈代谢中起着重要的作用,以及免疫系统和神经系统。微生物失衡(菌群失调)可能导致随后的身体和精神疾病。因此,人们对微生物群-肠-脑-脑轴以及细菌和神经细胞之间可能存在的生物电通信越来越感兴趣。这项研究的目的是研究肠道微生物组特有的两种细菌的生物电谱(electromme):革兰氏阴性杆菌大肠杆菌(E.大肠杆菌),和Firmicutes革兰氏阳性球菌粪肠球菌(E.粪肠)。我们分析了两种细菌菌株,以(i)验证荧光探针双-(1,3-二丁基巴比妥酸)三甲胺氧杂酚,DiBAC4(3),作为两种细菌膜电位(Vmem)变化的可靠报道者;(ii)评估两种菌株在整个生长过程中生物电谱的演变;(iii)研究两种神经型刺激对Vmem变化的影响:兴奋性神经递质谷氨酸(Glu)和抑制性神经递质γ-氨基丁酸(GABA);(iv)检查神经递质诱导的生物电变化对细菌生长的影响,生存能力,和利用吸光度的可栽培性,活/死荧光探针,和可行的计数,分别。我们的发现揭示了每种细菌种类和生长期的独特生物电特征。重要的是,神经型刺激诱导Vmem变化而不影响细菌生长,生存能力,或可培养性,提示细菌细胞对神经递质线索的特定生物电反应。这些结果有助于理解细菌对外界刺激的反应,具有调节细菌生物电作为新的治疗靶标的潜在意义。
    The gut microbiome plays a fundamental role in metabolism, as well as the immune and nervous systems. Microbial imbalance (dysbiosis) can contribute to subsequent physical and mental pathologies. As such, interest has been growing in the microbiota-gut-brain brain axis and the bioelectrical communication that could exist between bacterial and nervous cells. The aim of this study was to investigate the bioelectrical profile (electrome) of two bacterial species characteristic of the gut microbiome: a Proteobacteria Gram-negative bacillus Escherichia coli (E. coli), and a Firmicutes Gram-positive coccus Enterococcus faecalis (E. faecalis). We analyzed both bacterial strains to (i) validate the fluorescent probe bis-(1,3-dibutylbarbituric acid) trimethine oxonol, DiBAC4(3), as a reliable reporter of the changes in membrane potential (Vmem) for both bacteria; (ii) assess the evolution of the bioelectric profile throughout the growth of both strains; (iii) investigate the effects of two neural-type stimuli on Vmem changes: the excitatory neurotransmitter glutamate (Glu) and the inhibitory neurotransmitter γ-aminobutyric acid (GABA); (iv) examine the impact of the bioelectrical changes induced by neurotransmitters on bacterial growth, viability, and cultivability using absorbance, live/dead fluorescent probes, and viable counts, respectively. Our findings reveal distinct bioelectrical profiles characteristic of each bacterial species and growth phase. Importantly, neural-type stimuli induce Vmem changes without affecting bacterial growth, viability, or cultivability, suggesting a specific bioelectrical response in bacterial cells to neurotransmitter cues. These results contribute to understanding the bacterial response to external stimuli, with potential implications for modulating bacterial bioelectricity as a novel therapeutic target.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    细胞间通讯是由生化的总和介导的,生物物理,和生物电信号。这不仅可能发生在属于相同组织和/或动物物种的细胞之间,也可能发生在从进化的角度来看,很远。细菌和神经细胞之间发生生物电通信的可能性为肠道微生物群-脑轴的研究开辟了令人兴奋的前景。本文的目的是(i)建立一种可靠的方法来评估两种细菌菌株的生物电状态:枯草芽孢杆菌(B.枯草杆菌)和罗伊利莫杆菌(L.reuteri);(ii)在整个生长动力学中监测细菌生物电谱;(iii)评估两种神经递质(谷氨酸和γ-氨基丁酸-GABA)对细菌生物电特征的影响。我们的结果表明,在细胞周期的每个阶段,枯草芽孢杆菌的膜电位(Vmem)和群体的增殖能力在功能上是相关的。值得注意的是,我们证明细菌通过改变Vmem特性来响应神经信号。最后,我们表明,对神经刺激的反应的Vmem变化也存在于与微生物群相关的罗伊氏乳杆菌菌株中。我们的原理验证数据揭示了一种新的方法论方法,可以更好地理解细菌与大脑之间的关系,特别关注肠道微生物群。同样,这种方法将在调节细菌和神经元之间双向通讯的细胞间机制的研究中打开令人兴奋的观点,最终,用于设计针对神经精神疾病的肠道微生物群-脑轴靶向治疗。
    Inter-cellular communication is mediated by a sum of biochemical, biophysical, and bioelectrical signals. This might occur not only between cells belonging to the same tissue and/or animal species but also between cells that are, from an evolutionary point of view, far away. The possibility that bioelectrical communication takes place between bacteria and nerve cells has opened exciting perspectives in the study of the gut microbiota-brain axis. The aim of this paper is (i) to establish a reliable method for the assessment of the bioelectrical state of two bacterial strains: Bacillus subtilis (B. subtilis) and Limosilactobacillus reuteri (L. reuteri); (ii) to monitor the bacterial bioelectrical profile throughout its growth dynamics; and (iii) to evaluate the effects of two neurotransmitters (glutamate and γ-aminobutyric acid-GABA) on the bioelectrical signature of bacteria. Our results show that membrane potential (Vmem) and the proliferative capacity of the population are functionally linked in B. subtilis in each phase of the cell cycle. Remarkably, we demonstrate that bacteria respond to neural signals by changing Vmem properties. Finally, we show that Vmem changes in response to neural stimuli are present also in a microbiota-related strain L. reuteri. Our proof-of-principle data reveal a new methodological approach for the better understanding of the relation between bacteria and the brain, with a special focus on gut microbiota. Likewise, this approach will open exciting perspectives in the study of the inter-cellular mechanisms which regulate the bi-directional communication between bacteria and neurons and, ultimately, for designing gut microbiota-brain axis-targeted treatments for neuropsychiatric diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号