biparatopic

双亲
  • 文章类型: Journal Article
    激动剂抗体正被用于从神经退行性疾病到癌症的治疗应用。对于肿瘤坏死因子(TNF)受体超家族,三个或更多受体的高阶聚类是它们激活的关键,这可以使用识别两个独特表位的抗体来实现。然而,双表位的产生(即,双特异性)抗体通常需要动物免疫,并且费力且不可预测。这里,我们报道了一种鉴定能有效激活TNF受体的双表位抗体的简单方法,无需额外的动物免疫.我们的方法使用现有的,受体特异性IgG,缺乏内在的激动剂活性,来阻断它们相应的表位,然后选择结合可接近表位的单链抗体。将选择的抗体与IgG的轻链融合以产生人四价抗体。我们通过将针对OX40和CD137(4-1BB)的几种临床阶段抗体转化为具有有效激动剂活性的双表位抗体来强调这种方法的广泛用途。
    Agonist antibodies are being pursued for therapeutic applications ranging from neurodegenerative diseases to cancer. For the tumor necrosis factor (TNF) receptor superfamily, higher-order clustering of three or more receptors is key to their activation, which can be achieved using antibodies that recognize two unique epitopes. However, the generation of biepitopic (i.e., biparatopic) antibodies typically requires animal immunization and is laborious and unpredictable. Here, we report a simple method for identifying biepitopic antibodies that potently activate TNF receptors without the need for additional animal immunization. Our approach uses existing, receptor-specific IgGs, which lack intrinsic agonist activity, to block their corresponding epitopes, then selects single-chain antibodies that bind accessible epitopes. The selected antibodies are fused to the light chains of IgGs to generate human tetravalent antibodies. We highlight the broad utility of this approach by converting several clinical-stage antibodies against OX40 and CD137 (4-1BB) into biepitopic antibodies with potent agonist activity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fmicb.2023.1110541。].
    [This corrects the article DOI: 10.3389/fmicb.2023.1110541.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    骆驼重链抗体可变域(VHHs)的晶体结构与艰难梭菌毒素A(TcdA)的组合重复寡肽结构域的片段结合,表明VHHA20的C端位于距N-30埃处VHHA26的末端。基于这一观察,我们产生了一个在N端有A20的双互补位融合蛋白,随后是(GS)6接头和在C-末端的A26。与未融合的A20和A26VHH相比,该A20-A26融合蛋白显示出结合亲和力的改善和TcdA中和效力的显着增加(>330倍[IC50];≥2,700倍[IC99])。A20-A26与一系列包括两个A20VHH融合体的对照抗体构建体相比,也显示出高得多的结合亲和力和中和效力。两个A26VHH的融合,A26在N-末端和A20在C-末端(A26-A20),和actoxumab.特别是,A20-A26显示出比A26-A20高310倍(IC50)至29,000倍(IC99)的中和效力。尺寸排阻色谱-多角度光散射(SEC-MALS)分析进一步显示,A20-A26以1:1化学计量结合TcdA,并且同时接合A20和A26表位,如基于由结合A20和A26的TcdA的晶体结构启发的双位型设计所预期的。相比之下,对照构建体显示出不同的和异质的结合模式。这些结果突出了分子几何约束在产生能够利用多于一个互补位与抗原的同时结合的高效基于抗体的试剂中的重要性。
    Crystal structures of camelid heavy-chain antibody variable domains (VHHs) bound to fragments of the combined repetitive oligopeptides domain of Clostridiodes difficile toxin A (TcdA) reveal that the C-terminus of VHH A20 was located 30 Å away from the N-terminus of VHH A26. Based on this observation, we generated a biparatopic fusion protein with A20 at the N-terminus, followed by a (GS)6 linker and A26 at the C-terminus. This A20-A26 fusion protein shows an improvement in binding affinity and a dramatic increase in TcdA neutralization potency (>330-fold [IC 50]; ≥2,700-fold [IC 99]) when compared to the unfused A20 and A26 VHHs. A20-A26 also shows much higher binding affinity and neutralization potency when compared to a series of control antibody constructs that include fusions of two A20 VHHs, fusions of two A26 VHHs, a biparatopic fusion with A26 at the N-terminus and A20 at the C-terminus (A26-A20), and actoxumab. In particular, A20-A26 displays a 310-fold (IC 50) to 29,000-fold (IC 99) higher neutralization potency than A26-A20. Size-exclusion chromatography-multiangle light scattering (SEC-MALS) analyses further reveal that A20-A26 binds to TcdA with 1:1 stoichiometry and simultaneous engagement of both A20 and A26 epitopes as expected based on the biparatopic design inspired by the crystal structures of TcdA bound to A20 and A26. In contrast, the control constructs show varied and heterogeneous binding modes. These results highlight the importance of molecular geometric constraints in generating highly potent antibody-based reagents capable of exploiting the simultaneous binding of more than one paratope to an antigen.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    In the absence of a proven effective vaccine preventing infection by SARS-CoV-2, or a proven drug to treat COVID-19, the positive results of passive immune therapy using convalescent serum provide a strong lead. We have developed a new class of tetravalent, biparatopic therapy, 89C8-ACE2. It combines the specificity of a monoclonal antibody (89C8) that recognizes the relatively conserved N-terminal domain of the viral Spike (S) glycoprotein, and the ectodomain of ACE2, which binds to the receptor-binding domain of S. This molecule shows exceptional performance in vitro, inhibiting the interaction of recombinant S1 to ACE2 and transduction of ACE2-overexpressing cells by S-pseudotyped lentivirus with IC50s substantially below 100 pM, and with potency approximately 100-fold greater than ACE2-Fc itself. Moreover, 89C8-ACE2 was able to neutralize authentic viral infection in a standard 96-h co-incubation assay at low nanomolar concentrations, making this class of molecule a promising lead for therapeutic applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Patients with Human epidermal growth factor receptor type 2 (Her2) overexpression are associated with aggressive tumor growth and poor clinical outcomes. Bispecific antibodies targeting Her2 have recently exhibited potent effects on Her2 signal inhibition. In this study, a novel biparatopic anti-Her2 bispecific antibody (Bp-Bs) was constructed by linking a single anti-CD3 Fab with two different anti-Her2 single-domain antibodies targeting non-overlapping epitopes of Her2. The Bp-Bs demonstrated strong binding on Her2-positive cells and potent cytotoxicity on Her2-positive tumor cells, even Her2-low expression cells, suggesting that biparatopic bispecific antibodies may have improved therapeutic benefits on broad Her2 patient populations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    MET, the product of the c-MET proto-oncogene, and its ligand hepatocyte growth factor/scatter factor (HGF/SF) control survival, proliferation and migration during development and tissue regeneration. HGF/SF-MET signaling is equally crucial for growth and metastasis of a variety of human tumors, but resistance to small-molecule inhibitors of MET kinase develops rapidly and therapeutic antibody targeting remains challenging. We made use of the designed ankyrin repeat protein (DARPin) technology to develop an alternative approach for inhibiting MET. We generated a collection of MET-binding DARPins covering epitopes in the extracellular MET domains and created comprehensive sets of bi-paratopic fusion proteins. This new class of molecules efficiently inhibited MET kinase activity and downstream signaling, caused receptor downregulation and strongly inhibited the proliferation of MET-dependent gastric carcinoma cells carrying MET locus amplifications. MET-specific bi-paratopic DARPins may represent a novel and potent strategy for therapeutic targeting of MET and other receptors, and this study has elucidated their mode of action.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Non-immunoglobulin scaffolds represent a proven group of small affinity proteins that can be engineered in vitro to similar affinity and potency as monoclonal antibodies. Several novel candidate biotherapeutics that exploit the potential advantages scaffold proteins hold over larger and more complex antibodies have been developed over the past decade. The ease of using small and robust binding proteins as flexible and modular building blocks has led to the development of a wide range of innovative approaches to combine them in various bi- and multispecific formats. This progress is expected to aid the ongoing challenge of identifying niche applications where clear differentiation from antibody-based molecules will be key to success. Given the many engineering options that are available for non-immunoglobulin scaffold proteins, they have potential to not only complement but probably also surpass antibodies in certain applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Improving potencies through concomitant blockage of multiple epitopes and avid binding by fusing multiple (different) monovalent Nanobody building blocks via linker sequences into one multivalent polypeptide chain is an elegant alternative to affinity maturation. We explored a large and random formatting library of bivalent (combinations of two identical) and biparatopic (combinations of two different) Nanobodies for functional blockade of Pseudomonas aeruginosa PcrV. PcrV is an essential part of the P. aeruginosa type III secretion system (T3SS), and its oligomeric nature allows for multiple complex binding and blocking options. The library screening yielded a large number of promising biparatopic lead candidates, revealing significant (and non-trivial) preferences in terms of Nanobody building block and epitope bin combinations and orientations. Excellent potencies were confirmed upon further characterization in two different P. aeruginosa T3SS-mediated cytotoxicity assays. Three biparatopic Nanobodies were evaluated in a lethal mouse P. aeruginosa challenge pneumonia model, conferring 100% survival upon prophylactic administration and reducing lung P. aeruginosa burden by up to 2 logs. At very low doses, they protected the mice from P. aeruginosa infection-related changes in lung histology, myeloperoxidase production, and lung weight. Importantly, the most potent Nanobody still conferred protection after therapeutic administration up to 24 h post-infection. The concept of screening such formatting libraries for potency improvement is applicable to other targets and biological therapeutic platforms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号