biomolecular condensates

生物分子缩合物
  • 文章类型: Journal Article
    细胞内容物的选择性划分是生物化学调节的基础。尽管膜结合的细胞器通过使用半透性屏障来控制组合物,生物分子缩合物依赖于成分之间的相互作用来确定组成。缩合物通过动态多价相互作用形成,通常涉及蛋白质的内在无序区域(IDR),然而,这些动态相互作用是否会产生不同的成分尚不清楚。这里,通过比较分析由两种不同缩合物差异分配的蛋白质,我们发现不同的成分是通过特定的IDR介导的相互作用产生的。差异分配的蛋白质的IDR对于选择性分配是必要和充分的。IDR分区需要不同的序列特征,交换这些序列特征会改变分配的特异性。交换完整的IDR将蛋白质及其生化活性重定位到不同的缩合物中。我们的结果表明,IDR介导的相互作用可以将蛋白质靶向特定的缩合物,实现细胞内生物化学的空间调节。
    Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    保守的信号级联监测蛋白质折叠稳态以确保适当的细胞功能。进化保守的关键角色之一是IRE1,它通过未折叠的蛋白质反应(UPR)维持内质网(ER)稳态。当错误折叠的蛋白质在ER中积累时,IRE1在ER膜上形成簇,以启动UPR信号传导。调节IRE1簇形成的原因尚不完全清楚。这里,我们显示人IRE1α的ER腔结构域(LD)在体外形成生物分子缩合物。IRE1αLD缩合物通过与未折叠的多肽结合以及与模型膜连接而稳定,表明它们在将IRE1α组装成具有信号能力的稳定簇方面的作用。分子动力学模拟表明,弱多价相互作用驱动IRE1αLD聚类。诱变实验确定了IRE1αLD中的无序区域,以控制其在体外和细胞中的聚集。重要的是,IRE1α突变体聚类失调导致IRE1α信号传导缺陷。我们的结果表明,IRE1αLD中的无序区域控制其聚类,并表明它们在调节膜上蛋白质组装中的作用。
    Conserved signaling cascades monitor protein-folding homeostasis to ensure proper cellular function. One of the evolutionary conserved key players is IRE1, which maintains endoplasmic reticulum (ER) homeostasis through the unfolded protein response (UPR). Upon accumulation of misfolded proteins in the ER, IRE1 forms clusters on the ER membrane to initiate UPR signaling. What regulates IRE1 cluster formation is not fully understood. Here, we show that the ER lumenal domain (LD) of human IRE1α forms biomolecular condensates in vitro. IRE1α LD condensates were stabilized both by binding to unfolded polypeptides as well as by tethering to model membranes, suggesting their role in assembling IRE1α into signaling-competent stable clusters. Molecular dynamics simulations indicated that weak multivalent interactions drive IRE1α LD clustering. Mutagenesis experiments identified disordered regions in IRE1α LD to control its clustering in vitro and in cells. Importantly, dysregulated clustering of IRE1α mutants led to defects in IRE1α signaling. Our results revealed that disordered regions in IRE1α LD control its clustering and suggest their role as a common strategy in regulating protein assembly on membranes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    通过液-液相分离(LLPS)形成的生物分子缩合物已成为细胞中大分子代谢和生化反应的广泛机制。当细胞的物理和化学性质改变时,蛋白质和核酸等大分子将自发聚集并组装成由LLPS驱动的液滴状结构。LLPS为先天免疫应答提供了成熟的分子平台,它在空间和物理上紧密调节肝脏免疫反应的关键信号,包括DNA和RNA传感通路,炎症体激活,和自噬。拿着这个,LLPS在一系列肝脏疾病中起促进或保护作用,如病毒性肝炎,非酒精性脂肪性肝病,肝纤维化,肝脏缺血再灌注损伤,自身免疫性肝病,还有肝癌.这篇综述系统地描述了LLPS在肝脏先天免疫中的整体前景。这将有助于我们指导更好的个性化方法来治疗肝脏疾病的LLPS靶向免疫治疗。
    Biomolecular condensates formed by liquid-liquid phase separation (LLPS) have become an extensive mechanism of macromolecular metabolism and biochemical reactions in cells. Large molecules like proteins and nucleic acids will spontaneously aggregate and assemble into droplet-like structures driven by LLPS when the physical and chemical properties of cells are altered. LLPS provides a mature molecular platform for innate immune response, which tightly regulates key signaling in liver immune response spatially and physically, including DNA and RNA sensing pathways, inflammasome activation, and autophagy. Take this, LLPS plays a promoting or protecting role in a range of liver diseases, such as viral hepatitis, non-alcoholic fatty liver disease, liver fibrosis, hepatic ischemia-reperfusion injury, autoimmune liver disease, and liver cancer. This review systematically describes the whole landscape of LLPS in liver innate immunity. It will help us to guide a better-personalized approach to LLPS-targeted immunotherapy for liver diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    活细胞的内部微环境是异质的,并且包括具有不同生物化学的多个细胞器。其中包括生物分子缩合物,它们是无膜的,富含系统特异性蛋白质和核酸的相分离区室。细胞的异质性导致化学中存在多个时空梯度,charge,浓度,温度,和压力。这样的热力学梯度可以导致用于生物分子冷凝物的形成和运输的非平衡驱动力。这里,我们报告了离子梯度如何影响生物分子缩合物在中尺度和生物分子在微观尺度上的传输过程。利用微流体平台,我们证明离子浓度梯度的存在可以加速生物分子的运输,包括核酸和蛋白质,通过扩散电泳。这种流体动力学运输过程允许生物分子的局部富集,从而通过相分离促进生物分子缩合物的位置特异性形成。离子梯度进一步赋予冷凝物的定向运动性,允许它们沿着梯度表现出增强的扩散。再加上折返相行为,梯度诱导的增强的运动性导致冷凝物的动态重新分布,最终延长了它们的寿命。一起,我们的结果表明,扩散电泳是一种非平衡热力学力,控制着生物分子缩合物的形成和运输。
    The internal microenvironment of a living cell is heterogeneous and comprises a multitude of organelles with distinct biochemistry. Amongst them are biomolecular condensates, which are membrane-less, phase-separated compartments enriched in system-specific proteins and nucleic acids. The heterogeneity of the cell engenders the presence of multiple spatiotemporal gradients in chemistry, charge, concentration, temperature, and pressure. Such thermodynamic gradients can lead to non-equilibrium driving forces for the formation and transport of biomolecular condensates. Here, we report how ion gradients impact the transport processes of biomolecular condensates on the mesoscale and biomolecules on the microscale. Utilizing a microfluidic platform, we demonstrate that the presence of ion concentration gradients can accelerate the transport of biomolecules, including nucleic acids and proteins, via diffusiophoresis. This hydrodynamic transport process allows localized enrichment of biomolecules, thereby promoting the location-specific formation of biomolecular condensates via phase separation. The ion gradients further impart directional motility of condensates, allowing them to exhibit enhanced diffusion along the gradient. Coupled with a reentrant phase behavior, the gradient-induced enhanced motility leads to a dynamical redistribution of condensates that ultimately extends their lifetime. Together, our results demonstrate diffusiophoresis as a non-equilibrium thermodynamic force that governs the formation and transport of biomolecular condensates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物分子缩合物是由时间依赖性定义的粘弹性材料,序列特异性复剪切模量。这里,我们证明了粘弹性模量可以直接使用Rouse模型的推广来计算,该模型利用了有关链内和链间接触的信息,我们从基于晶格的MetropolisMonteCarlo(MMC)相分离模拟的平衡构型中提取。广义Rouse模型的关键成分是我们从平衡MMC模拟中计算的图拉普拉斯算子。我们计算了两种类型的图拉普拉斯,一个基于单链图,该单链图只考虑链内联系人,另一个被称为说明链间交互的集合图。基于单链图的计算系统地高估了存储和损耗模量,而基于集体图的计算以更高的保真度再现了测量的模量。然而,在很长的时间里,低频域,这两个图的混合证明是最准确的。与Rouse的理论一致,与最近的主张相反,我们发现在凝析油中存在弛豫时间的连续分布。主要弹性与主要粘性行为之间的单个交叉频率并不意味着单个弛豫时间。相反,它受到放松模式的整体影响。因此,我们的分析证实,粘弹性流体状冷凝物最好被描述为广义麦克斯韦流体。最后,我们表明,复杂的剪切模量可以用来解决一个反问题,以获得弛豫时间谱,作为冷凝物内动力学的基础。鉴于冷凝物粘弹性的被动和主动微流变测量的进步,这具有实际意义。
    Biomolecular condensates are viscoelastic materials defined by time-dependent, sequence-specific complex shear moduli. Here, we show that viscoelastic moduli can be computed directly using a generalization of the Rouse model that leverages information regarding intra- and inter-chain contacts, which we extract from equilibrium configurations of lattice-based Metropolis Monte Carlo (MMC) simulations of phase separation. The key ingredient of the generalized Rouse model is a graph Laplacian that we compute from equilibrium MMC simulations. We compute two flavors of graph Laplacians, one based on a single-chain graph that accounts only for intra-chain contacts, and the other referred to as a collective graph that accounts for inter-chain interactions. Calculations based on the single-chain graph systematically overestimate the storage and loss moduli, whereas calculations based on the collective graph reproduce the measured moduli with greater fidelity. However, in the long time, low-frequency domain, a mixture of the two graphs proves to be most accurate. In line with the theory of Rouse and contrary to recent assertions, we find that a continuous distribution of relaxation times exists in condensates. The single crossover frequency between dominantly elastic vs dominantly viscous behaviors does not imply a single relaxation time. Instead, it is influenced by the totality of the relaxation modes. Hence, our analysis affirms that viscoelastic fluid-like condensates are best described as generalized Maxwell fluids. Finally, we show that the complex shear moduli can be used to solve an inverse problem to obtain the relaxation time spectra that underlie the dynamics within condensates. This is of practical importance given advancements in passive and active microrheology measurements of condensate viscoelasticity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在从头出现期间,新的蛋白质编码基因从以前的非基因序列中出现。它们编码的从头蛋白在组成和预测的生化特性上与保守蛋白不同。然而,功能性从头蛋白质确实存在。功能性从头蛋白的鉴定及其结构表征在实验上都是费力的。为了在计算机中鉴定功能性和结构化的从头蛋白,我们应用了最近开发的基于机器学习的工具,发现大多数从头蛋白在结构和序列上确实与保守蛋白不同。然而,一些从头蛋白质被预测采用已知的蛋白质折叠,参与细胞反应,并形成生物分子缩合物。除了扩大我们对从头蛋白质进化的理解,我们的研究还提供了大量可检验的假设,用于对果蝇中从头蛋白的结构和功能进行重点实验研究。
    During de novo emergence, new protein coding genes emerge from previously nongenic sequences. The de novo proteins they encode are dissimilar in composition and predicted biochemical properties to conserved proteins. However, functional de novo proteins indeed exist. Both identification of functional de novo proteins and their structural characterization are experimentally laborious. To identify functional and structured de novo proteins in silico, we applied recently developed machine learning based tools and found that most de novo proteins are indeed different from conserved proteins both in their structure and sequence. However, some de novo proteins are predicted to adopt known protein folds, participate in cellular reactions, and to form biomolecular condensates. Apart from broadening our understanding of de novo protein evolution, our study also provides a large set of testable hypotheses for focused experimental studies on structure and function of de novo proteins in Drosophila.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2核衣壳蛋白(N蛋白)通过进行液-液相分离以形成核糖核蛋白(RNP)复合物来驱动病毒基因组RNA(gRNA)翻译并抑制病毒复制至关重要压力颗粒和加工体,这被假定为增加未包被的gRNA的可用性。N蛋白还可以与广泛的宿主内源蛋白(包括RNA结合蛋白(RBP))形成生物分子缩合物。在这些RBP中,是与病理相关的蛋白质,神经元,以及几种成人神经退行性疾病的神经胶质细胞质内含物,包括TARDNA结合蛋白43kDa(TDP-43),在超过95%的肌萎缩侧索硬化症病例中形成病理包涵体。在这项研究中,我们证明了N蛋白可以与TDP-43形成生物分子缩合物,并且这取决于N蛋白C端结构域(N-CTD)和TDP-43的固有无序C端结构域。该过程在RNA存在下显著加速。计算机模拟表明,在RNA存在下形成的生物分子缩合物由N蛋白四重体组成,其中掺入了内在无序的TDP-43C末端结构域。
    The SARS-CoV-2 nucleocapsid protein (N protein) is critical in viral replication by undergoing liquid-liquid phase separation to seed the formation of a ribonucleoprotein (RNP) complex to drive viral genomic RNA (gRNA) translation and in suppressing both stress granules and processing bodies, which is postulated to increase uncoated gRNA availability. The N protein can also form biomolecular condensates with a broad range of host endogenous proteins including RNA binding proteins (RBPs). Amongst these RBPs are proteins that are associated with pathological, neuronal, and glial cytoplasmic inclusions across several adult-onset neurodegenerative disorders, including TAR DNA binding protein 43 kDa (TDP-43) which forms pathological inclusions in over 95% of amyotrophic lateral sclerosis cases. In this study, we demonstrate that the N protein can form biomolecular condensates with TDP-43 and that this is dependent on the N protein C-terminus domain (N-CTD) and the intrinsically disordered C-terminus domain of TDP-43. This process is markedly accelerated in the presence of RNA. In silico modeling suggests that the biomolecular condensate that forms in the presence of RNA is composed of an N protein quadriplex in which the intrinsically disordered TDP-43 C terminus domain is incorporated.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物分子冷凝物是通过细胞内液-液相分离的动态液滴,充当无膜细胞器,它们高度参与各种复杂的细胞过程和功能。通过类似途径形成的人工类似物可以与生物复杂性和高级功能整合在一起,在合成生物学领域受到了极大的研究兴趣。基于凝聚层的液滴隔室可以分配和浓缩各种溶质,它们被认为是模仿生物分子缩合物的相分离行为和生物物理特征的有吸引力的候选者。使用肽基材料作为相分离组分具有氨基酸残基多样性和定制序列设计等优点,这允许编程它们的相分离行为和所得隔室的物理化学性质。从这个角度来看,我们强调了最近的进展,在设计和构建的仿生凝聚从合成肽相关的细胞内相分离蛋白,具体参考他们的分子设计,通过相分离自组装,和生物相关的应用,设想使用基于肽的液滴作为新兴的生物医学递送载体。
    Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    生物分子缩合物通过相分离和相关的相变在活细胞中组装。这些动态分子组件的一个未被重视的特征是它们与其他细胞结构形成界面,包括膜,细胞骨架,DNA和RNA,和其他无膜室。这些界面预计会产生毛细管力,但是在活细胞中量化和利用这些力的方法很少。这里,我们引入粘弹性染色质系链和组织(VECTOR),它使用光诱导的生物分子冷凝物在目标DNA基因座处产生毛细管力。VECTOR可用于在几秒到几分钟的时间尺度上可编程地重新定位基因组基因座,定量揭示染色质粘弹性材料性质的局部异质性。这些合成的冷凝物是由在活细胞中自然形成液体状结构的成分构成的,强调天然凝聚物产生力量的潜在作用,并努力重组基因组和影响染色质结构。
    Biomolecular condensates assemble in living cells through phase separation and related phase transitions. An underappreciated feature of these dynamic molecular assemblies is that they form interfaces with other cellular structures, including membranes, cytoskeleton, DNA and RNA, and other membraneless compartments. These interfaces are expected to give rise to capillary forces, but there are few ways of quantifying and harnessing these forces in living cells. Here, we introduce viscoelastic chromatin tethering and organization (VECTOR), which uses light-inducible biomolecular condensates to generate capillary forces at targeted DNA loci. VECTOR can be utilized to programmably reposition genomic loci on a timescale of seconds to minutes, quantitatively revealing local heterogeneity in the viscoelastic material properties of chromatin. These synthetic condensates are built from components that naturally form liquid-like structures in living cells, highlighting the potential role for native condensates to generate forces and do work to reorganize the genome and impact chromatin architecture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    这项研究研究了由不同长度的聚精氨酸链(Rx)和柠檬酸(CA)衍生物形成的生物分子缩合物的粘度和液-固转变行为。通过将各种长度的Rx链与CA衍生物缩合,我们表明,当与CA缩合时,较短的Rx链减弱了较长链的高聚集趋势。不同Rx长度的混合物表现出均匀的冷凝内分布,而其流动性在很大程度上取决于较长Rx链的比例。我们的发现证明了一种通过调节支架分子的组成来调节缩合物性质的简单方法,阐明了分子组成在控制冷凝粘度和转变动力学中的作用。这项研究有助于对生物分子缩合过程有更深入的了解,并提供了对各种应用中控制冷凝特性的潜在策略的见解。包括未来的合成生物学和疾病治疗领域。
    This study investigates the viscosity and liquid-solid transition behavior of biomolecular condensates formed by polyarginine chains (Rx) of varying lengths and citric acid (CA) derivatives. By condensing Rx chains of various lengths with CA derivatives, we showed that the shorter Rx chains attenuate the high aggregation tendency of the longer chains when condensed with CA. A mixture of different Rx lengths exhibited uniform intracondensate distribution, while its mobility largely depended on the ratio of the longer Rx chain. Our findings demonstrate a simple method to modulate condensate properties by adjusting the composition of scaffold molecules, shedding light on the role of molecular composition in controlling condensate viscosity and transition dynamics. This research contributes to a deeper understanding of biomolecular condensation processes and offers insights into potential strategies for manipulating condensate properties for various applications, including in the fields of synthetic biology and disease therapeutics in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号