base editing

基础编辑
  • 文章类型: Journal Article
    近年来CRISPR/Cas基因编辑技术的创新发展迅速。在疾病动物模型构建等领域有着广泛的应用,生物育种,疾病诊断和筛查,基因治疗,细胞定位,细胞谱系追踪,合成生物学,信息存储,等。然而,在各个领域发展理想化的编辑仍然是未来发展的目标。本文重点介绍了非DSB编辑BE和PE在基于平台的CRISPR系统中的发展和创新。它首先解释了诸如“替代”之类的改进思想的应用,\"组合\",\"适应\",以及BE和PE发展中的“调整”,然后对CRISPR技术创新所反映的巧妙的倒置和思想飞跃进行分类。然后将详细阐述目前为开发小型编辑以解决AAV过载问题所做的努力,并总结使用AAV作为传递系统进行体内基因修饰的编辑的应用现状。最后,它总结了CRISPR/Cas创新带来的灵感,并评估了理想化编辑的未来发展前景。
    The innovation of CRISPR/Cas gene editing technology has developed rapidly in recent years. It is widely used in the fields of disease animal model construction, biological breeding, disease diagnosis and screening, gene therapy, cell localization, cell lineage tracking, synthetic biology, information storage, etc. However, developing idealized editors in various fields is still a goal for future development. This article focuses on the development and innovation of non-DSB editors BE and PE in the platform-based CRISPR system. It first explains the application of ideas for improvement such as \"substitution\", \"combination\", \"adaptation\", and \"adjustment\" in BE and PE development and then catalogues the ingenious inversions and leaps of thought reflected in the innovations made to CRISPR technology. It will then elaborate on the efforts currently being made to develop small editors to solve the problem of AAV overload and summarize the current application status of editors for in vivo gene modification using AAV as a delivery system. Finally, it summarizes the inspiration brought by CRISPR/Cas innovation and assesses future prospects for development of an idealized editor.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    来自同种异体供体的嵌合抗原受体(CAR)T细胞通过克服与自体细胞制造相关的挑战,承诺“现成”的可用性。然而,受体对同种异体CAR-T细胞的免疫排斥可能会降低其体内寿命并限制治疗效果.这里,我们证明了免疫抑制剂雷帕霉素和他克莫司有效地减轻了免疫活性人源化小鼠中HLA错配CAR-T细胞的同种排斥反应,将其体内持久性扩展到同基因人源化小鼠来源的CAR-T细胞。反过来,基因敲除(KO)的FKBP脯氨酸异构酶1A(FKBP1A),编码两种药物靶向的蛋白质,对这些免疫抑制剂赋予CD19特异性CAR-T细胞(19CAR)强大的功能抗性是必要的。与未处理的19CAR-T细胞类似,FKBP1AKO19CAR-T细胞维持有效的体外功能谱并控制体内肿瘤进展。此外,免疫抑制剂治疗避免了体内同种排斥反应,从而导致FKBP1AKO19CAR-T细胞驱动的B细胞再生障碍。因此,我们证明,基因组工程使免疫抑制剂治疗能够提高通用供体来源的CAR-T细胞的治疗潜力.
    Chimeric antigen receptor (CAR) T cells from allogeneic donors promise \"off-the-shelf\" availability by overcoming challenges associated with autologous cell manufacturing. However, recipient immunologic rejection of allogeneic CAR-T cells may decrease their in vivo lifespan and limit treatment efficacy. Here, we demonstrate that the immunosuppressants rapamycin and tacrolimus effectively mitigate allorejection of HLA-mismatched CAR-T cells in immunocompetent humanized mice, extending their in vivo persistence to that of syngeneic humanized mouse-derived CAR-T cells. In turn, genetic knockout (KO) of FKBP prolyl isomerase 1A (FKBP1A), which encodes a protein targeted by both drugs, was necessary to confer CD19-specific CAR-T cells (19CAR) robust functional resistance to these immunosuppressants. FKBP1AKO 19CAR-T cells maintained potent in vitro functional profiles and controlled in vivo tumor progression similarly to untreated 19CAR-T cells. Moreover, immunosuppressant treatment averted in vivo allorejection permitting FKBP1AKO 19CAR-T cell-driven B cell aplasia. Thus, we demonstrate that genome engineering enables immunosuppressant treatment to improve the therapeutic potential of universal donor-derived CAR-T cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用于哺乳动物基因组编辑的CRISPR-Cas工具通常依赖于单个Cas9或Cas12a蛋白。虽然I类的I型CRISPR系统可以提供更大的特异性和多功能性,它们在基因组编辑方面并不发达。这里,我们提出了一种来自普通Desulfovibrio(Dvu)的替代I-C型CRISPR系统,用于在哺乳动物细胞和动物中进行有效和精确的基因组编辑。我们优化了DvuI-C型编辑复合物,以使用配对的PAM-incrRNA策略在各种细胞系和猪原代成纤维细胞中的多个基因座处产生精确的缺失。这些编辑的猪细胞可以用作产生转基因克隆仔猪的供体。Dvu类型I-C编辑器还能够使用同源性指导的修复进行精确的大片段替换。此外,我们对Dvu-Cascade效应子进行了胞嘧啶和腺嘌呤碱基编辑,开发Dvu-CBE和Dvu-ABE系统。这些系统在没有双链断裂的情况下有效地诱导人基因中的C-T和A-G取代。脱靶分析证实了Dvu型I-C编辑器的高特异性。我们的研究结果证明了Dvu类型I-C编辑器在不同哺乳动物基因组编辑应用中的潜力。包括删除,片段替换,和基础编辑,对生物医学和农业具有高效率和特异性。
    CRISPR-Cas tools for mammalian genome editing typically rely on single Cas9 or Cas12a proteins. While type I CRISPR systems in Class I may offer greater specificity and versatility, they are not well-developed for genome editing. Here, we present an alternative type I-C CRISPR system from Desulfovibrio vulgaris (Dvu) for efficient and precise genome editing in mammalian cells and animals. We optimized the Dvu type I-C editing complex to generate precise deletions at multiple loci in various cell lines and pig primary fibroblast cells using a paired PAM-in crRNA strategy. These edited pig cells can serve as donors for generating transgenic cloned piglets. The Dvu type I-C editor also enabled precise large fragment replacements with homology-directed repair. Additionally, we adapted the Dvu-Cascade effector for cytosine and adenine base editing, developing Dvu-CBE and Dvu-ABE systems. These systems efficiently induced C-to-T and A-to-G substitutions in human genes without double-strand breaks. Off-target analysis confirmed the high specificity of the Dvu type I-C editor. Our findings demonstrate the Dvu type I-C editor\'s potential for diverse mammalian genome editing applications, including deletions, fragment replacement, and base editing, with high efficiency and specificity for biomedicine and agriculture.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:碱基编辑是人工进化创造等位基因多样性并改善农艺性状的强大工具。然而,每个sgRNA靶标的巨大进化潜力被忽视了。并且目前没有高通量方法用于基于大的突变池在单个靶标中产生和表征尽可能多的变化以允许植物中的快速基因定向进化。
    结果:在这项研究中,我们建立了一个有效的种系特异性进化系统来筛选拟南芥中有益的等位基因,可用于作物改良。该系统基于强大的卵细胞特异性胞嘧啶碱基编辑器和拟南芥的大种子生产,这使得具有未编辑的野生型等位基因的每个T1植物能够产生数千个独立的T2突变系。它有能力创造广泛的突变系,包括那些含有非典型碱基替换的,以及提供一种节省空间和劳力的方式来存储和筛选产生的突变库。使用这个系统,我们有效地产生抗除草剂的EPSPS,ALS,和可用于作物育种的HPPD变体。
    结论:这里,我们证明了碱基编辑介导的人工进化对每个sgRNA靶标的巨大潜力,并设计了一个有效的系统来进行深度进化以利用这一潜力。
    BACKGROUND: Base editing is a powerful tool for artificial evolution to create allelic diversity and improve agronomic traits. However, the great evolutionary potential for every sgRNA target has been overlooked. And there is currently no high-throughput method for generating and characterizing as many changes in a single target as possible based on large mutant pools to permit rapid gene directed evolution in plants.
    RESULTS: In this study, we establish an efficient germline-specific evolution system to screen beneficial alleles in Arabidopsis which could be applied for crop improvement. This system is based on a strong egg cell-specific cytosine base editor and the large seed production of Arabidopsis, which enables each T1 plant with unedited wild type alleles to produce thousands of independent T2 mutant lines. It has the ability of creating a wide range of mutant lines, including those containing atypical base substitutions, and as well providing a space- and labor-saving way to store and screen the resulting mutant libraries. Using this system, we efficiently generate herbicide-resistant EPSPS, ALS, and HPPD variants that could be used in crop breeding.
    CONCLUSIONS: Here, we demonstrate the significant potential of base editing-mediated artificial evolution for each sgRNA target and devised an efficient system for conducting deep evolution to harness this potential.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    IscB蛋白,作为Cas9核酸内切酶的祖先,由于它们的小尺寸和多样化基因组编辑的潜力,因此拥有巨大的希望。然而,它们在哺乳动物细胞中的活性不能令人满意。通过在IscB中引入三个剩余取代,我们观察到活性平均增加7.5倍.通过融合序列非特异性DNA结合蛋白结构域,eIscB-D变体实现了更高的编辑效率,最高为91.3%。此外,产生了工程化的ωRNA,长度减少了20%,效率略有提高。与原始IscB相比,工程化的eIscB-D/eωRNA系统的活性平均增加20.2倍。此外,我们成功地采用eIscB-D进行高效的胞嘧啶和腺嘌呤碱基编辑。值得注意的是,eIscB-D在小鼠细胞系和胚胎中具有很高的活性,能够通过mRNA/ωRNA注射有效生成疾病模型。我们的研究表明,这些微型基因组编辑工具在各种应用中具有巨大的潜力。
    The IscB proteins, as the ancestors of Cas9 endonuclease, hold great promise due to their small size and potential for diverse genome editing. However, their activity in mammalian cells is unsatisfactory. By introducing three residual substitutions in IscB, we observed an average 7.5-fold increase in activity. Through fusing a sequence-non-specific DNA-binding protein domain, the eIscB-D variant achieved higher editing efficiency, with a maximum of 91.3%. Moreover, engineered ωRNA was generated with a 20% reduction in length and slightly increased efficiency. The engineered eIscB-D/eωRNA system showed an average 20.2-fold increase in activity compared with the original IscB. Furthermore, we successfully adapted eIscB-D for highly efficient cytosine and adenine base editing. Notably, eIscB-D is highly active in mouse cell lines and embryos, enabling the efficient generation of disease models through mRNA/ωRNA injection. Our study suggests that these miniature genome-editing tools have great potential for diverse applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已确定多致病性单核苷酸多态性(SNP)是各种癌症中癌症预后恶化和耐药性出现的促成因素。在这里,我们针对突变的EGFR和TP53癌基因携带单核苷酸错义突变(EGFR-T790M和TP53-R273H),与吉非替尼耐药有关。通过腺病毒共同递送腺嘌呤碱基编辑器和EGFR和TP53SNP特异性单向导RNA导致在体外和体内以高准确性和效率在致癌突变位点处进行精确校正。重要的是,与仅用吉非替尼治疗的对照组相比,EGFR抑制剂,联合吉非替尼治疗TP53和EGFR中的Ad/ABE靶向SNP可增加药物敏感性并更有效地抑制异常肿瘤生长。一起来看,这些结果表明,ABE介导的双重致癌SNP校正可能是治疗耐药癌症的有效策略.
    Multiple pathogenic single-nucleotide polymorphisms (SNPs) have been identified as contributing factors in the aggravation of cancer prognosis and emergence of drug resistance in various cancers. Here, we targeted mutated EGFR and TP53 oncogenes harboring single-nucleotide missense mutations (EGFR-T790M and TP53-R273H) that are associated with gefitinib resistance. Co-delivery of adenine base editor (ABE) and EGFR- and TP53-SNP specific single-guide RNA via adenovirus (Ad) resulted in precise correction of the oncogenic mutations with high accuracy and efficiency in vitro and in vivo. Importantly, compared with a control group treated only with gefitinib, an EGFR inhibitor, co-treatment with Ad/ABE targeting SNPs in TP53 and EGFR in combination with gefitinib increased drug sensitivity and suppressed abnormal tumor growth more efficiently. Taken together, these results indicate that ABE-mediated correction of dual oncogenic SNPs can be an effective strategy for the treatment of drug-resistant cancers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非常规甲基营养酵母Komagataellaphafii被广泛应用于工业酶的生产中,药用蛋白质,和各种高价值化学品。为K.phafii开发强大而通用的基因组编辑工具对于设计越来越先进的细胞工厂至关重要。这里,我们首先基于CRISPR-nCas9系统开发了一种用于K.phafii的碱基编辑方法。我们设计了24种不同的基础编辑器结构,使用各种启动子和胞苷脱氨酶(CDAs)。最佳碱基编辑器(PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT)包含截短的AOX2启动子(PAOX2*),一种K.phafii密码子优化的人APOBEC3ACDA(KpA3A),人密码子优化的nCas9(D10A),和K.phafii密码子优化的尿嘧啶糖基化酶抑制剂(KpUGI)。这个最佳的基础编辑器在K.phafii中有效地执行了C到T编辑,与单-,double-,三基因座编辑效率高达96.0%,65.0%,和5.0%,分别,在从C-18到C-12的7个核苷酸窗口内。为了扩大可靶向基因组区域,我们还用nSpG和nSpRy替换了最佳基础编辑器中的nCas9,NGN-前间隔区相邻基序(PAM)位点的C-T编辑效率达到50.0%-60.0%,NRN-PAM位点的C-T编辑效率达到20.0%-93.2%,分别。因此,这些构建的基础编辑器已经成为基因功能研究的强大工具,代谢工程,基因改良,以及K.phafii的功能基因组学研究。
    The nonconventional methylotrophic yeast Komagataella phaffii is widely applied in the production of industrial enzymes, pharmaceutical proteins, and various high-value chemicals. The development of robust and versatile genome editing tools for K. phaffii is crucial for the design of increasingly advanced cell factories. Here, we first developed a base editing method for K. phaffii based on the CRISPR-nCas9 system. We engineered 24 different base editor constructs, using a variety of promoters and cytidine deaminases (CDAs). The optimal base editor (PAOX2*-KpA3A-nCas9-KpUGI-DAS1TT) comprised a truncated AOX2 promoter (PAOX2*), a K. phaffii codon-optimized human APOBEC3A CDA (KpA3A), human codon-optimized nCas9 (D10A), and a K. phaffii codon-optimized uracil glycosylase inhibitor (KpUGI). This optimal base editor efficiently performed C-to-T editing in K. phaffii, with single-, double-, and triple-locus editing efficiencies of up to 96.0%, 65.0%, and 5.0%, respectively, within a 7-nucleotide window from C-18 to C-12. To expand the targetable genomic region, we also replaced nCas9 in the optimal base editor with nSpG and nSpRy, and achieved 50.0%-60.0% C-to-T editing efficiency for NGN-protospacer adjacent motif (PAM) sites and 20.0%-93.2% C-to-T editing efficiency for NRN-PAM sites, respectively. Therefore, these constructed base editors have emerged as powerful tools for gene function research, metabolic engineering, genetic improvement, and functional genomics research in K. phaffii.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基因核心启动子区中的小突变可导致表达强度的实质性变化。然而,靶向核心启动子的富含TA的序列可能对Cas9变体(诸如SpCas9和其他富含G的PAM相容性Cas9s)构成挑战。在这项研究中,我们设计了一个独特的FrCas9系统,用于植物基因组编辑。我们的发现表明,当TATA序列用作PAM时,该系统在水稻中是有效的。此外,FrCas9证明了对所有16种可能的NNTAPAM的活性,在愈伤组织中达到高达35.3%的效率,并在31.3%的T0转基因植物中产生纯合或双等位基因突变。用于检查水稻WX核心启动子编辑的概念验证实验证实,FrCas9诱导的突变可以改变基因表达和直链淀粉含量。双向编辑产生多重突变和缺失,由FrCas9介导,使用单个回文TATA序列作为PAM。此外,我们开发了FrCas9衍生的基础编辑器,能够在植物中的A·T和G·C对之间进行可编程转换。这项研究强调了用于植物核心启动子编辑的多功能FrCas9工具集,为基因表达的微调和新种质的创造提供了巨大的潜力。
    在线版本包含补充材料,可在10.1007/s42994-024-00157-5获得。
    Small mutations in the core promoter region of a gene may result in substantial changes in expression strengths. However, targeting TA-rich sequences of core promoters may pose a challenge for Cas9 variants such as SpCas9 and other G-rich PAM-compatible Cas9s. In this study, we engineered a unique FrCas9 system derived from Faecalibaculum rodentium for plant genome editing. Our findings indicate that this system is efficient in rice when the TATA sequence is used as a PAM. In addition, FrCas9 demonstrated activity against all 16 possible NNTA PAMs, achieving an efficiency of up to 35.3% in calli and generating homozygous or biallelic mutations in 31.3% of the T0 transgenic plants. A proof-of-concept experiment to examine editing of the rice WX core promoter confirmed that FrCas9-induced mutations could modify gene expression and amylose content. Multiplex mutations and deletions were produced by bidirectional editing, mediated by FrCas9, using a single palindromic TATA sequence as a PAM. Moreover, we developed FrCas9-derived base editors capable of programmable conversion between A·T and G·C pairs in plants. This study highlights a versatile FrCas9 toolset for plant core promoter editing, offering great potential for the fine-tuning of gene expression and creating of new germplasms.
    UNASSIGNED: The online version contains supplementary material available at 10.1007/s42994-024-00157-5.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    婴儿型Pompe病(IOPD)是由GAA基因的致病变异引起的,它编码酸性α-葡萄糖苷酶。通过基因组编辑校正致病变体可能是PD的有价值的一次性疗法,并且可以改善当前的护理标准。我们在人类真皮成纤维细胞中进行了腺嘌呤碱基编辑,这些成纤维细胞具有三个过渡无义变体,c.2227C>T(p。Q743*;IOPD-1),c.2560C>T(p。R854*;IOPD-2),和c.2608C>T(p。R870*;IOPD-3)。观察到高达96%的目标变体腺嘌呤脱氨,在>50个非目标站点中进行最少的编辑。后基础编辑,表达的GAA蛋白高达0.66倍正常(未受影响的成纤维细胞),优于其中GAA不可检测的受影响的成纤维细胞的改善。转染后28天,GAA酶活性在81.91±13.51和129.98±9.33单位/mg蛋白之间,落在正常范围内(50-200单位/mg蛋白质)。LAMP2蛋白在编辑最强烈的细胞系中显著降低,IOPD-3,表明溶酶体负荷降低。一起来看,本文报道的研究结果表明,碱基编辑导致有效的腺嘌呤脱氨基,恢复GAA表达和活性,以及在最健壮编辑的细胞中溶酶体负荷的减少。未来的工作将在两个小鼠模型中评估基础编辑结果以及对庞贝病理学的影响。Gaac.2227C>T和Gaac.2560C>T。
    Infantile-onset Pompe disease (IOPD) results from pathogenic variants in the GAA gene, which encodes acid α-glucosidase. The correction of pathogenic variants through genome editing may be a valuable one-time therapy for PD and improve upon the current standard of care. We performed adenine base editing in human dermal fibroblasts harboring three transition nonsense variants, c.2227C>T (p.Q743∗; IOPD-1), c.2560C>T (p.R854∗; IOPD-2), and c.2608C>T (p.R870∗; IOPD-3). Up to 96% adenine deamination of target variants was observed, with minimal editing across >50 off-target sites. Post-base editing, expressed GAA protein was up to 0.66-fold normal (unaffected fibroblasts), an improvement over affected fibroblasts wherein GAA was undetectable. GAA enzyme activity was between 81.91 ± 13.51 and 129.98 ± 9.33 units/mg protein at 28 days post-transfection, which falls within the normal range (50-200 units/mg protein). LAMP2 protein was significantly decreased in the most robustly edited cell line, IOPD-3, indicating reduced lysosomal burden. Taken together, the findings reported herein demonstrate that base editing results in efficacious adenine deamination, restoration of GAA expression and activity, and reduction in lysosomal burden in the most robustly edited cells. Future work will assess base editing outcomes and the impact on Pompe pathology in two mouse models, Gaa c.2227C>T and Gaa c.2560C>T.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号