automated synthesis

自动合成
  • 文章类型: Journal Article
    注射泵用于化学等应用,医学,或微生物学提供高精度的剂量或减轻繁琐任务的工作量的方法。Further,高性能的注射泵是至关重要的自动化实验室任务。Perry泵的注射器尺寸范围为1-20mL,包括一个储液器,这使得可以使用更大的卷。显示的最低体积为20μL,为5.5μL/s,而最大的是20mL,为0.145mL/s。Perry泵的设计旨在易于3D打印,有限的金属零件,和一个高的通用性和耐化学品。
    Syringe pumps are used in applications such as chemistry, medicine, or microbiology offering high-precision dosing or a way to ease the workload of tedious tasks. Further, high-performance syringe pumps are crucial to automating laboratory tasks. The Perry Pump is demonstrated with syringe sizes ranging from 1-20 mL and includes a reservoir, which enables larger volumes to be used. The lowest volume demonstrated is 20 μ L at 5.5 μ L/s, while the largest is 20 mL at 0.145 mL/s. The Perry Pump is designed with the intention of easy to 3D-print, limited metal parts, and a high versatility and tolerance to chemicals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究为基于隐喻的合成实验提出了一种创新的范式,旨在通过人工引导的参数调整来提高实验优化效率。通过将隐喻实验系统与自动合成技术集成,我们的目标是深刻扩展材料化学的效率和进步。利用Metaverse中的先进软件算法和模拟技术,我们实时动态调整合成参数,从而最大限度地减少实验室实验中固有的传统试错方法。相比之下,完全由人工智能驱动的调整,这种人为干预的隐喻参数调整方法更快地达到了预期的结果。加上自动化合成技术,可以迅速实现隐喻系统中的实验。通过NaYF4:Yb/Tm纳米晶合成实验,验证了该系统的合成效率和精度,强调其在纳米材料研究中的巨大潜力。这种开创性的方法不仅简化了纳米晶体的制备过程,而且为新方法铺平了道路。为材料科学和纳米技术的未来突破奠定基础。
    This study proposes an innovative paradigm for metaverse-based synthesis experiments, aiming to enhance experimental optimization efficiency through human-guided parameter tuning in the metaverse and augmented artificial intelligence (AI) with human expertise. By integration of the metaverse experimental system with automated synthesis techniques, our goal is to profoundly extend the efficiency and advancement of materials chemistry. Leveraging advanced software algorithms and simulation techniques within the metaverse, we dynamically adjust synthesis parameters in real time, thereby minimizing the conventional trial-and-error methods inherent in laboratory experiments. In comparison fully AI-driven adjustments, this human-intervened approach to metaverse parameter tuning achieves desired results more rapidly. Coupled with automated synthesis techniques, experiments in the metaverse system can be swiftly realized. We validate the high synthesis efficiency and precision of this system through NaYF4:Yb/Tm nanocrystal synthesis experiments, highlighting its immense potential in nanomaterial studies. This pioneering approach not only simplifies the process of nanocrystal preparation but also paves the way for novel methodologies, laying the foundation for future breakthroughs in materials science and nanotechnology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    放射性标记的肽是用于诊断或治疗的有价值的工具;它们通常使用基于F-18辅基的间接方法进行放射性氟化。在这里,我们正在报告使用基于点击反应的两种不同方法对三种肽进行F-18放射性标记的结果.第一个使用众所周知的CuAAC反应,第二个是基于我们最近报道的异Diels-Alder(HDA)使用二硫酯(thia-Diels-Alder)反应。这两种方法都是自动化的,并且18F-肽以相似的产率和合成时间获得(通过两种方法在120-140分钟内进行37-39%衰减校正产率)。然而,为了获得相似的产量,CuAAC需要大量的铜以及许多添加剂,而HDA是催化剂和不含金属的反应,仅需要适当比例的水/乙醇。因此,HDA可以被认为是一种极简主义方法,其提供了容易获得氟-18标记的肽,并使其成为用于肽或生物分子的间接和位点特异性标记的有价值的附加工具。
    Radiolabeled peptides are valuable tools for diagnosis or therapies; they are often radiofluorinated using an indirect approach based on an F-18 prosthetic group. Herein, we are reporting our results on the F-18 radiolabeling of three peptides using two different methods based on click reactions. The first one used the well-known CuAAC reaction, and the second one is based on our recently reported hetero-Diels-Alder (HDA) using a dithioesters (thia-Diels-Alder) reaction. Both methods have been automated, and the 18F-peptides were obtained in similar yields and synthesis time (37-39% decay corrected yields by both methods in 120-140 min). However, to obtain similar yields, the CuAAC needs a large amount of copper along with many additives, while the HDA is a catalyst and metal-free reaction necessitating only an appropriate ratio of water/ethanol. The HDA can therefore be considered as a minimalist method offering easy access to fluorine-18 labeled peptides and making it a valuable additional tool for the indirect and site-specific labeling of peptides or biomolecules.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    固相肽合成(SPPS)是当今合成研究肽的主要方法。然而,由于使用了有害溶剂,如N,N-二甲基甲酰胺(DMF)或N-甲基吡咯烷酮,产生大量浪费。鉴于此,我们的研究努力为SPPS确定更环保的溶剂。在这项研究中,我们已经评估了五种绿色溶剂作为DMF替代品在微波辅助SPPS中的适用性。评估的溶剂包括Cyrene,乙酸乙酯,1,3-二氧戊环,四氢-2-甲基呋喃,和N-丁基吡咯烷酮(NBP)。我们的调查涵盖了合成过程的所有阶段,从树脂膨胀,试剂的溶解,最终成功合成了五种不同的肽,包括具有挑战性的ACP65-74,肽18A,胸腺素α1和Jung-Redemann肽。我们的研究结果表明,NBP成为一个强有力的竞争者,在所有测试的合成中表现与DMF相当。此外,我们观察到NBP与乙酸乙酯或四氢-2-甲基呋喃的组合显示出优异的结果。这项研究有助于在肽合成中追求更可持续和环保的实践。
    Solid-phase peptide synthesis (SPPS) is the prevailing method for synthesizing research peptides today. However, SPPS is associated with a significant environmental concern due to the utilization of hazardous solvents such as N,N-dimethylformamide (DMF) or N-methylpyrrolidone, which generate substantial waste. In light of this, our research endeavors to identify more environmentally friendly solvents for SPPS. In this study, we have assessed the suitability of five green solvents as alternatives to DMF in microwave assisted SPPS. The solvents evaluated include Cyrene, ethyl acetate, 1,3-dioxolane, tetrahydro-2-methylfuran, and N-Butylpyrrolidinone (NBP). Our investigation encompassed all stages of the synthesis process, from resin swelling, dissolution of reagents, culminating in the successful synthesis of five diverse peptides, including the challenging ACP 65-74, Peptide 18A, Thymosin α1, and Jung-Redemann peptide. Our findings indicate that NBP emerged as a strong contender, performing on par with DMF in all tested syntheses. Furthermore, we observed that combinations of NBP with either ethyl acetate or tetrahydro-2-methylfuran demonstrated excellent results. This research contributes to the pursuit of more sustainable and environmentally conscious practices in peptide synthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:自动化的[89Zr]Zr-放射性标记工艺具有简化[89Zr]Zr标记的PET显像剂生产的潜力。大多数放射性标记方案使用[89Zr][Zr(ox)4]4-作为起始材料,并且在放射性标记后除去草酸盐。在某些情况下,用[89Zr]ZrCl4作为起始材料的放射性标记在较低的反应温度下产生较好的放射化学产率。在这项工作中,报道了一种全自动生产[89Zr]ZrCl4的方法,并将其用于合成[89Zr]ZrDFOSq-bisPhPSMA和[89Zr]ZrDFOSq-TATE。
    结果:开发了一种通过在碳酸氢根活化的强阴离子交换柱上捕获[89Zr][Zr(ox)4]4-,然后用0.1MHCl在1MNaCl中洗脱来分离[89Zr]ZrCl4的简单自动化方法。[89Zr]ZrCl4常规地在0.1MHCl在1MNaCl中的弱酸性溶液中以>95%的产率从[89Zr][Zr(ox)4]4-回收,使用全自动方法。用乙酸钠缓冲液(0.25M)中和[89Zr]ZrCl4,从而不需要用强碱进行繁琐的手动中和。[89Zr]ZrCl4的混合物用于直接自动放射性标记反应,以在>95%RCP中80-90%的所有RCY中产生[89Zr]Zr-DFOSqualamide-bisPhPSMA和[89Zr]ZrDFOSqualamide-TATE。
    结论:这种生产[89Zr]ZrCl4的方法不需要通过蒸发除去HCl,使得该过程相对快速和有效。生产[89Zr]ZrCl4的全自动程序及其在放射性标记中的使用非常适合支持基于锆89的放射性药物的多剂量制剂的集中和标准化制造。
    BACKGROUND: Automated [89Zr]Zr-radiolabeling processes have the potential to streamline the production of [89Zr]Zr-labelled PET imaging agents. Most radiolabeling protocols use [89Zr][Zr(ox)4]4- as the starting material and oxalate is removed after radiolabeling. In some instances, radiolabeling with [89Zr]ZrCl4 as starting material gives better radiochemical yields at lower reaction temperatures. In this work, a fully-automated process for production of [89Zr]ZrCl4 is reported and its use for the synthesis of [89Zr]ZrDFOSq-bisPhPSMA and [89Zr]ZrDFOSq-TATE.
    RESULTS: A simple automated process for the isolation of [89Zr]ZrCl4 by trapping [89Zr][Zr(ox)4]4- on a bicarbonate-activated strong anion exchange cartridge followed by elution with 0.1 M HCl in 1 M NaCl was developed. [89Zr]ZrCl4 was routinely recovered from [89Zr][Zr(ox)4]4- in > 95% yield in mildly acidic solution of 0.1 M HCl in 1 M NaCl using a fully-automated process. The [89Zr]ZrCl4 was neutralized with sodium acetate buffer (0.25 M) removing the requirement for cumbersome manual neutralization with strong base. The mixture of [89Zr]ZrCl4 was used for direct automated radiolabeling reactions to produce [89Zr]Zr-DFOSquaramide-bisPhPSMA and [89Zr]ZrDFOSquaramide-TATE in 80-90% over all RCY in > 95% RCP.
    CONCLUSIONS: This method for the production of [89Zr]ZrCl4 does not require removal of HCl by evaporation making this process relatively fast and efficient. The fully automated procedures for the production of [89Zr]ZrCl4 and its use in radiolabeling are well suited to support the centralized and standardized manufacture of multiple dose preparations of zirconium-89 based radiopharmaceuticals.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体膜转运蛋白18kDa(TSPO)在活化小胶质细胞中表达增加,建立为神经炎症成像的合理目标。[11C]ER176,特异性结合TSPO,已被开发为第三代放射性配体,用于TSPO的PET成像,这显示了比以前更好地量化神经炎症的潜力。在目前的研究中,我们为[11C]ER176临床生产开发了一种具有改进的HPLC纯化方法的自动放射合成。使用具有等度泵的反相半制备HPLC柱以及甲醇和50mM乙酸铵的混合物作为流动相,将改进的HPLC分离整合到[11C]ER176的自动化生产中。在约8.5-9.0分钟收集对应于[11C]ER176的级分,而没有从附近杂质得到污染的风险。自动化生产过程在轰击(EOB)结束后花费约30分钟,并且最终产品[11C]ER176的质量满足基于当前美国药典和FDACGMP要求的临床使用的所有规范。
    Mitochondrial membrane translocator protein 18 kDa (TSPO) expression is increased in activated microglia, established as a plausible target of neuroinflammation imaging. [11C]ER176, specifically binding to TSPO, has been developed as the third generation of radioligand for PET imaging of TSPO, which showed the potential in better quantifying neuroinflammation than its predecessors. In the current study, we developed an automated radiosynthesis with an improved HPLC purification method for [11C]ER176 clinical production. The improved HPLC separation was integrated into the automated production of [11C]ER176 using a reverse phase semi-preparative HPLC column with an isocratic pump and the mixture of methanol and 50 mM ammonium acetate as the mobile phase. The fraction corresponding to [11C]ER176 was collected around 8.5-9.0 min without the risk of getting contaminations from nearby impurities. The automated production process took about 30 min after end of bombardment (EOB) and the quality of the final product [11C]ER176 met all specifications for clinical use based on current US Pharmacopeia and FDA CGMP requirements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:制药公司已采取措施在欧盟获得PSMA配体的上市许可。自2022年12月起,Locametz®(PSMA-11,gozetotide)被许可为用于使用镓-68进行手动放射性标记的试剂盒,并自2023年中期开始商用。产品特征概述(SmPC)描述了在放射性标记1369MBq后具有最大活性的手动放射性标记。我们的目标是用更高的活性进行放射性标记,以提高生产效率,因此,自动放射性标记比手动放射性标记更受欢迎,以减少人员的辐射暴露。这项研究的目的是开发和验证使用〜2000MBq的镓-68洗脱液进行放射性标记的Locametz®试剂盒的自动放射性标记方法。
    结果:使用Locametz®试剂盒对[68Ga]Ga-PSMA-11进行自动放射性标记提供了符合Ph.欧尔.,在室温下的保质期为6小时,理论上减少了5.7倍的辐射暴露。用一个和两个发生器进行放射性标记,制备后的放射化学产率为91-102%和96-101%。分别。用一个发生器进行放射性标记的放射化学纯度为98.0%至99.6%,用两个具有相似稳定性的发生器进行放射性标记的放射化学纯度为98.4%至99.3%。当使用两个发生器时,最终产品的活性要高得多,1961-2035MBq与740-1260MBq相比,这导致每次准备可用的患者注射器约1.5倍。
    结论:使用具有比SmPC中规定的更高的镓-68活性的Locametz®试剂盒对[68Ga]Ga-PSMA-11进行自动放射性标记,结果产品符合Ph.欧尔.专着,在室温下的保质期为6小时。用两个发生器进行放射性标记被证明是可能的,并产生了质量相似但效率高得多的产品。
    BACKGROUND: Steps have been taken by pharmaceutical companies to obtain marketing authorisation of PSMA ligands in the European Union. Since December 2022, Locametz® (PSMA-11, gozetotide) is licensed as kit for manual radiolabelling with gallium-68 and commercially available since mid-2023. The Summary of Product Characteristic (SmPC) describes manual radiolabelling with a maximum activity after radiolabelling of 1369 MBq. We aimed for radiolabelling with a higher activity to increase production efficiency, and thus, automated radiolabelling is strongly preferred over manual radiolabelling to reduce radiation exposure to personnel. The aim of this study was to develop and validate a method for automated radiolabelling of the Locametz® kit using ~ 2000 MBq of gallium-68 eluate for radiolabelling.
    RESULTS: Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit provided a product which complies to the Ph. Eur., had a shelf-life of 6 h at room temperature, and theoretically reduced radiation exposure 5.7 times. Radiolabelling with one and two generator(s) resulted in a radiochemical yield of 91-102% and 96-101% after preparation, respectively. The radiochemical purity ranged from 98.0 to 99.6% for radiolabelling with one generator and ranged from 98.4 to 99.3% for radiolabelling with two generators with similar stability. The activity of the final product was much higher when using two generators, 1961-2035 MBq compared to 740-1260 MBq, which leads to ~ 1.5 times more patient syringes available per preparation.
    CONCLUSIONS: Automated radiolabelling of [68Ga]Ga-PSMA-11 using the Locametz® kit with higher gallium-68 activity than specified in the SmPC results in a product that is in compliance with the Ph. Eur. monograph and has a shelf-life of 6 h at room temperature. Radiolabelling with two generators proved possible and resulted in a product with similar quality but with much higher efficiency.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    目的:使用市售专用[11C]-来自合成前体的化学模块,从市售起始材料和自动放射合成[11C]PiB有效合成前体。
    背景:[11C]PiB是一种用于β-淀粉样蛋白PET成像的有前途的放射性示踪剂,推进阿尔茨海默病研究。有效放射性标记的前体和方案的可用性促进了任何放射性示踪剂的应用。以茴香胺和4-硝基苯甲酰氯为原料,分5步进行PiB前体的高效合成,有了加法,替换,和环化化学方法。该前体在市售的合成器中用于[11C]PiB的全自动放射合成。MPS-100(SHI,日本)。合成的[11C]PiB通过固相方法纯化,其质量控制是根据临床使用所需的质量和安全性标准进行的。
    方法:用70-80%产率的市售材料开始合成所需的前体和标准的可信化合物。标准分析方法表征了所有合成的化合物。用于[11C]PiB与[11C]CH3OTf的放射合成的全自动[11C]化学合成仪(MPS-100)用作甲基化剂。对于放射性标记,探索了不同量的前体和反应时间。所得的粗产物通过固相柱进行纯化。合成的放射性示踪剂使用分析工具,如放射性TLC,HPLC,pH值内毒性,和半衰期。
    结果:使用简单可行的化学方法以优异的产率获得了[11C]PiB的放射合成前体。使用自动合成仪开发了将前体放射性标记为合成的[11C]PiB的方案。粗放射性示踪剂通过固相柱纯化,衰变校正的放射化学产率为40±5%,放射化学纯度在约20分钟内超过97%(EOB)。计算比活性并发现在110-121mCi/μmol范围内。
    结论:开发了一种可靠的方法来制备前体,然后使用[11C]MeOTf作为甲基化剂进行全自动放射性标记以合成[11C]PiB。最终的无HPLC纯化在一个放射性核素半衰期内产生超过97%的放射化学纯度示踪剂。该方法对于任何临床中心都是可重复和有效的。
    OBJECTIVE: Efficient synthesis of precursor from commercially available starting materials and automated radiosynthesis of [11C]PiB using commercially available dedicated [11C]- Chemistry module from the synthesized precursor.
    BACKGROUND: [11C]PiB is a promising radiotracer for PET imaging of β-Amyloid, advancing Alzheimer\'s disease research. The availability of precursors and protocols for efficient radiolabelling foster the applications of any radiotracer. Efficient synthesis of PiB precursor was performed using anisidine and 4-nitrobenzoyl chloride as starting materials in 5 steps, having addition, substitutions, and cyclization chemical methodologies. This precursor was used for fully automated radiosynthesis of [11C]PiB in a commercially available synthesizer, MPS-100 (SHI, Japan). The synthesized [11C]PiB was purified via solid-phase methodology, and its quality control was performed by the quality and safety criteria required for clinical use.
    METHODS: The synthesis of desired precursors and standard authentic compounds started with commercially available materials with 70-80% yields. The standard analytical methods were characterized all synthesized compounds. The fully automated [11C]-chemistry synthesizer (MPS-100) used for radiosynthesis of [11C]PiB with [11C]CH3OTf acts as a methylating agent. For radiolabelling, varied amounts of precursor and time of reaction were explored. The resulting crude product underwent purification through solid-phase cartridges. The synthesized radiotracer was analyzed using analytical tools such as radio TLC, HPLC, pH endo-toxicity, and half-life.
    RESULTS: The precursor for radiosynthesis of [11C]PiB was achieved in excellent yield using simple and feasible chemistry. A protocol for radiolabelling of precursor to synthesized [11C]PiB was developed using an automated synthesizer. The crude radiotracer was purified by solid-phase cartridge, with a decay-corrected radiochemical yield of 40±5% and radiochemical purity of more than 97% in approx 20 minutes (EOB). The specific activity was calculated and found in a 110-121 mCi/μmol range.
    CONCLUSIONS: A reliable methodology was developed for preparing precursor followed by fully automated radiolabeling using [11C]MeOTf as a methylating agent to synthesize [11C]PiB. The final HPLC-free purification yielded more than 97% radiochemical purity tracer within one radionuclide half-life. The method was reproducible and efficient for any clinical center.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    最近,针对成纤维细胞活化蛋白(FAP)的新型放射性混合示踪剂[18F]Lu-LuFL已被开发用于实体肿瘤的PET成像.这种示踪剂已经显示出有希望的结果,促使我们进行首次人体研究,以评估其在人体FAPPET成像中的功效。为了方便[18F]Lu-LuFL的常规生产和临床应用,描述了一种简单而有效的自动化合成。在实验室规模确定了最佳标记参数,并随后纳入自动化生产过程。进一步的研究表明,临床剂量的[18F]Lu-LuFL可以在19分钟内制备,具有优异的放射化学纯度(>99%)和活性产率(23.58%±2.20%,非衰减校正),结合固相萃取(SPE)纯化方法。所有质量控制结果均满足所需的释放标准。总之,我们已经成功地合成了[18F]Lu-LuFL,具有足够的放射性和优良的质量,从而确立其进一步临床应用的潜力。
    Recently, a novel radiohybrid tracer [18F]Lu-LuFL targeting the fibroblast activation protein (FAP) has been developed for PET imaging of solid tumors. This tracer has shown promising results, prompting us to conduct a first-in-human study to evaluate its efficacy for PET imaging of FAP in human body. In order to facilitate the routine production and clinical application of [18F]Lu-LuFL, a straightforward and efficient automated synthesis is described. The optimum labeling parameters were determined at laboratory scale, and subsequently incorporated into an automated production process. Further studies have demonstrated that clinical doses of [18F]Lu-LuFL can be prepared within 19 min, with excellent radio chemical purity (>99%) and activity yield (23.58% ± 2.20%, non-decay corrected), coupled with solid phase extraction (SPE) purification method. All the quality control results satisfy the required criteria for release. In conclusion, we have successfully synthesized [18F]Lu-LuFL with sufficient radioactivity and superior quality, thereby establishing its potential for further clinical application.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:前列腺特异性膜抗原(PSMA)是前列腺癌分子成像和靶向放射性核素治疗的理想靶标。因此,开发了各种PSMA配体。这些分子中的一些被可以容纳放射性金属的螯合剂官能化,如68Ga用于PET成像。68Ga放射性标记步骤受益于过程自动化,使其更坚固,减少辐射暴露。
    目的:为符合GMP的[68Ga]Ga-PSMA-11的制备设计一种单一的自动放射性标记方案,可转座至[68Ga]Ga-PSMA-617和[68Ga]Ga-PSMA-I&T的生产。
    方法:使用GAIA®合成模块和GALLIAD®发生器。验证了放射性TLC和放射性HPLC方法的放射化学纯度(RCP)测定。生产了三个[68Ga]Ga-PSMA-11验证批次,并对外观和pH进行了彻底测试。放射性核素鉴定和纯度,RCP,稳定性,残留溶剂和无菌。对试剂和一次性用品进行了最小的修饰,以最佳地应用于其他PSMA配体。
    结果:用于临床应用的[68Ga]Ga-PSMA-11在27分钟内产生。3个验证批次符合欧洲药典所预期的允许常规生产的质量标准。为了最佳地转座至PSMA-617,改变固相萃取柱以改善放射性标记产物的纯化。对于PSMA-I&T的应用,最初使用的缓冲溶液被HEPES2.7M替代,以获得良好的放射化学产率.在最终产品中检查残留HEPES含量,并且低于Ph。欧尔.阈值。
    结论:开发并实施了GAIA®模块上的单一自动放射性标记方法,用于3个PSMA配体的68Ga放射性标记,对每个分子进行轻微调整。
    BACKGROUND: Prostate-specific membrane antigen (PSMA) is an ideal target for molecular imaging and targeted radionuclide therapy in prostate cancer. Consequently, various PSMA ligands were developed. Some of these molecules are functionalized with a chelator that can host radiometals, such as 68Ga for PET imaging. The 68Ga radiolabeling step benefits from process automation, making it more robust and reducing radiation exposure.
    OBJECTIVE: To design a single automated radiolabeling protocol for the GMP-compliant preparation of [68Ga]Ga-PSMA-11, transposable to the production of [68Ga]Ga-PSMA-617 and [68Ga]Ga-PSMA-I&T.
    METHODS: A GAIA® synthesis module and a GALLIAD® generator were used. Radio-TLC and radio-HPLC methods were validated for radiochemical purity (RCP) determination. Three [68Ga]Ga-PSMA-11 validation batches were produced and thoroughly tested for appearance and pH, radionuclide identity and purity, RCP, stability, residual solvent and sterility. Minimal modifications were made to the reagents and disposables for optimal application to other PSMA ligands.
    RESULTS: [68Ga]Ga-PSMA-11 for clinical application was produced in 27 min. The 3 validation batches met the quality criteria expected by the European Pharmacopoeia to allow routine production. For optimal transposition to PSMA-617, the solid phase extraction cartridge was changed to improve purification of the radiolabeled product. For application to PSMA-I&T, the buffer solution initially used was replaced by HEPES 2.7 M to achieve good radiochemical yields. Residual HEPES content was checked in the final product and was below the Ph. Eur. threshold.
    CONCLUSIONS: A single automated radiolabeling method on the GAIA® module was developed and implemented for 68Ga radiolabeling of 3 PSMA ligands, with slight adjustments for each molecule.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号