atomistic models

  • 文章类型: Journal Article
    了解在存在硅粉的情况下,化学掺合料的聚(羧酸盐)如何与水泥孔溶液中的钙离子相互作用,对于开发用于混凝土生产的更好的化学掺合料至关重要。在这项工作中,在硅灰存在下,通过经典的全原子分子动力学(MD)模拟和密度泛函理论(DFT)计算方法研究了钙离子与聚(羧酸)超增塑剂类型的化学混合物的分子间相互作用。经典的全原子MD模拟和DFT计算结果表明,钙离子与PCE羧酸根的氧原子相互作用。更好的相互作用能可能意味着改善了PCE片段对钙离子的吸附。在这方面,可以注意到,与基于醚的PCE区段相比,基于酯的PCE区段可以具有更好的对钙离子的吸附。此外,二氧化硅的存在可以改善PCE片段在钙离子上的吸附。
    Understanding how poly(carboxylate)s of chemical admixtures interact with calcium ions in cement pore solutions in the presence of silica fume is fundamental to developing better chemical admixtures for concrete production. In this work, the intermolecular interactions of calcium ions with a poly(carboxylate) superplasticizer type of chemical admixture was investigated via classical all-atom molecular dynamics (MD) simulations and Density Functional Theory (DFT) calculation methods in the presence of silica fume. The classical all-atom MD simulation and DFT calculation results indicate that calcium ions are interacting with oxygen atoms of the carboxylate group of PCE. The better interaction energy could mean an improved adsorption of the PCE segment with calcium ions. In this regard, it can be noted that the ester-based PCE segment could have a better adsorption onto calcium ions in comparison with the ether-based PCE segment. Moreover, the presence of silicon dioxide could improve the adsorption of the PCE segment onto calcium ions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于肽的自组装已被用于产生宽范围的纳米结构。虽然这些系统中的大多数涉及α-肽的自组装,最近,β-肽也被证明经历超分子自组装,并已用于生产用于组织工程的材料,细胞培养和药物递送。为了设计具有特定结构和功能的新材料,理论分子模型可以为驱动自组装的非共价相互作用的集体平衡提供重要的见解,并确定在不同条件下所得超分子材料的结构。然而,这种方法直到最近才对基于肽的自组装纳米材料变得可行,特别是那些掺入非α-氨基酸的。这个观点提供了与β-肽的自组装的计算建模相关的挑战的概述,以及使用实验和计算技术的组合来提供对这些新的生物相容性材料的自组装机制和完全原子模型的见解的最近成功。
    Peptide-based self-assembly has been used to produce a wide range of nanostructures. While most of these systems involve self-assembly of α-peptides, more recently β-peptides have also been shown to undergo supramolecular self-assembly, and have been used to produce materials for applications in tissue engineering, cell culture and drug delivery. In order to engineer new materials with specific structure and function, theoretical molecular modelling can provide significant insights into the collective balance of non-covalent interactions that drive the self-assembly and determine the structure of the resultant supramolecular materials under different conditions. However, this approach has only recently become feasible for peptide-based self-assembled nanomaterials, particularly those that incorporate non α-amino acids. This perspective provides an overview of the challenges associated with computational modelling of the self-assembly of β-peptides and the recent success using a combination of experimental and computational techniques to provide insights into the self-assembly mechanisms and fully atomistic models of these new biocompatible materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    数据驱动的原子间势已成为逼近从头算势能面的强大工具。创建这些原子间电势的最耗时的步骤通常是生成合适的训练数据库。为了帮助这个过程,过度主动学习(HAL),加速主动学习计划,提出了一种快速自动化训练数据库组装的方法。HAL将偏置项添加到物理激励采样器(例如分子动力学),从而将原子结构推向不确定性,进而生成看不见或有价值的训练配置。拟议的HAL框架用于从大约十二种初始构型开始开发AlSi10合金和聚乙二醇(PEG)聚合物的原子簇扩展(ACE)原子间电势。HAL产生的ACE电位被证明能够确定宏观性质,如熔化温度和密度,接近实验精度。
    Data-driven interatomic potentials have emerged as a powerful tool for approximating ab initio potential energy surfaces. The most time-consuming step in creating these interatomic potentials is typically the generation of a suitable training database. To aid this process hyperactive learning (HAL), an accelerated active learning scheme, is presented as a method for rapid automated training database assembly. HAL adds a biasing term to a physically motivated sampler (e.g. molecular dynamics) driving atomic structures towards uncertainty in turn generating unseen or valuable training configurations. The proposed HAL framework is used to develop atomic cluster expansion (ACE) interatomic potentials for the AlSi10 alloy and polyethylene glycol (PEG) polymer starting from roughly a dozen initial configurations. The HAL generated ACE potentials are shown to be able to determine macroscopic properties, such as melting temperature and density, with close to experimental accuracy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Superionics是迷人的材料,显示固体和液体样的特征:作为固体,它们对剪切应力有弹性反应;作为液体,它们在正常条件下显示快速离子扩散。除了这样的科学兴趣,优势与能源技术相关,电子,和传感应用。表征和理解它们的弹性特性是,例如,迫切需要解决它们作为全固态电池中固态电解质的可行性。然而,静态弹性方法假设定义良好的参考位置,原子围绕该位置振动,与快速离子导体中移动离子的准液体运动相反。这里,我们从等压-等温系综中的系综波动推导出了超离子的弹性张量,利用广泛的Car-Parrinello模拟。我们将这种方法应用于范式锂离子导体,并用块分析来计算统计误差。在轨迹上采样的静态方法通常会高估响应,强调动态处理在确定超离子弹性张量中的重要性。
    Superionics are fascinating materials displaying both solid- and liquid-like characteristics: as solids, they respond elastically to shear stress; as liquids, they display fast-ion diffusion at normal conditions. In addition to such scientific interest, superionics are technologically relevant for energy, electronics, and sensing applications. Characterizing and understanding their elastic properties is, e.g., urgently needed to address their feasibility as solid-state electrolytes in all-solid-state batteries. However, static approaches to elasticity assume well-defined reference positions around which atoms vibrate, in contrast with the quasi-liquid motion of the mobile ions in fast ionic conductors. Here, we derive the elastic tensors of superionics from ensemble fluctuations in the isobaric-isothermal ensemble, exploiting extensive Car-Parrinello simulations. We apply this approach to paradigmatic Li-ion conductors, and complement with a block analysis to compute statistical errors. Static approaches sampled over the trajectories often overestimate the response, highlighting the importance of a dynamical treatment in determining elastic tensors in superionics.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    胶原蛋白是细胞外基质(ECM)中的主要蛋白质,是纤维组织的主要承重成分。胶原纤维的纳米结构和结构在这些组织的力学行为中起重要作用。到目前为止,已经进行了广泛的实验和理论研究来捕获这些特性,但目前的模型都不能真实地代表网络力学的复杂性,因为人们对胶原的内部结构及其对组织力学性质的影响的了解还很少。这篇综述文章的目的是强调交联在不同胶原基组织的计算建模中的重要性,并揭示需要连续模型来考虑交联特性,以更好地反映实验中观察到的力学行为。此外,本研究概述了当前调查的局限性,并为今后的工作提供了潜在的建议.
    Collagen as the main protein in Extra Cellular Matrix (ECM) is the main load-bearing component of fibrous tissues. Nanostructure and architecture of collagen fibrils play an important role in mechanical behavior of these tissues. Extensive experimental and theoretical studies have so far been performed to capture these properties, but none of the current models realistically represent the complexity of network mechanics because still less is known about the collagen\'s inner structure and its effect on the mechanical properties of tissues. The goal of this review article is to emphasize the significance of cross-links in computational modeling of different collagen-based tissues, and to reveal the need for continuum models to consider cross-links properties to better reflect the mechanical behavior observed in experiments. In addition, this study outlines the limitations of current investigations and provides potential suggestions for the future work.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    机器学习在化学和材料科学的许多领域发挥着越来越重要的作用。用于预测材料特性,加速模拟,设计新的结构,并预测新材料的合成路线。图神经网络(GNN)是增长最快的机器学习模型类别之一。它们与化学和材料科学特别相关,因为它们直接在分子和材料的图形或结构表示上工作,因此可以完全访问表征材料所需的所有相关信息。在这篇评论中,我们概述了GNN的基本原理,广泛使用的数据集,和最先进的架构,随后讨论了GNNs在化学和材料科学中的广泛最新应用,最后给出了进一步开发和应用GNN的路线图。
    Machine learning plays an increasingly important role in many areas of chemistry and materials science, being used to predict materials properties, accelerate simulations, design new structures, and predict synthesis routes of new materials. Graph neural networks (GNNs) are one of the fastest growing classes of machine learning models. They are of particular relevance for chemistry and materials science, as they directly work on a graph or structural representation of molecules and materials and therefore have full access to all relevant information required to characterize materials. In this Review, we provide an overview of the basic principles of GNNs, widely used datasets, and state-of-the-art architectures, followed by a discussion of a wide range of recent applications of GNNs in chemistry and materials science, and concluding with a road-map for the further development and application of GNNs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    与Winterbottom问题相关的连续模型,即,确定停留在衬底上的晶滴的平衡形状的问题,通过原子模型的Γ收敛,考虑到液滴粒子之间以及与固定衬底原子的原子相互作用,通过严格的离散到连续的通道在二维中得出。作为分析的副产品,连续模型中出现的液滴表面各向异性和液滴/基材粘附参数的有效表达式以原子势表征,选择Heitmann-Radin粘性磁盘类型。此外,确定仅取决于此类电势的阈值条件,以区分润湿状态,其中离散的最小化器被明确地表征为包含在无限厚层中的配置,即,润湿层,在基板上,从去湿制度。在后一种制度中,此外,由于原子数趋于无穷大,因此已证明质量守恒在极限范围内,原子模型的最小化器的适当缩放(直到提取子序列并在衬底表面上执行平移)收敛到满足体积约束的Winterbottom连续体模型的有界最小化器。
    The continuum model related to the Winterbottom problem, i.e., the problem of determining the equilibrium shape of crystalline drops resting on a substrate, is derived in dimension two by means of a rigorous discrete-to-continuum passage by Γ -convergence of atomistic models taking into consideration the atomic interactions of the drop particles both among themselves and with the fixed substrate atoms. As a byproduct of the analysis, effective expressions for the drop surface anisotropy and the drop/substrate adhesion parameter appearing in the continuum model are characterized in terms of the atomistic potentials, which are chosen of Heitmann-Radin sticky-disk type. Furthermore, a threshold condition only depending on such potentials is determined distinguishing the wetting regime, where discrete minimizers are explicitly characterized as configurations contained in an infinitesimally thick layer, i.e., the wetting layer, on the substrate, from the dewetting regime. In the latter regime, also in view of a proven conservation of mass in the limit as the number of atoms tends to infinity, proper scalings of the minimizers of the atomistic models converge (up to extracting a subsequence and performing translations on the substrate surface) to a bounded minimizer of the Winterbottom continuum model satisfying the volume constraint.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号