atomic layer deposition

原子层沉积
  • 文章类型: Journal Article
    在这项研究中,使用倒装芯片键合工艺制造了四种不同尺寸(5×5μm2,10×10μm2,25×25μm2,50×50μm2)的μLED阵列。研究了两种钝化工艺,一种是使用等离子体增强化学气相沉积(PECVD)沉积的单层SiO2,另一种是在SiO2层下方通过原子层沉积(ALD)沉积的Al2O3。由于优越的覆盖和保护,双层钝化工艺导致5μm芯片尺寸的μLED阵列中μLED的漏电流降低了三阶。此外,在具有双层钝化的每个芯片尺寸的μLED阵列中观察到更高的μLED光输出功率。特别是,通过双层钝化,具有5μm×5μm芯片尺寸的μLED阵列的EQE值最高为21.9%。与单层钝化的μLED阵列相比,通过引入双层钝化,μLED阵列的EQE值提高了4.4倍。最后,使用ImageJ软件通过双层钝化工艺在5μm×5μm芯片尺寸的μLED中观察到更均匀的发光模式。
    In this study, arrays of μLEDs in four different sizes (5 × 5 μm2, 10 × 10 μm2, 25 × 25 μm2, 50 × 50 μm2) were fabricated using a flip-chip bonding process. Two passivation processes were investigated with one involving a single layer of SiO2 deposited using plasma-enhanced chemical vapor deposition (PECVD) and the other incorporating Al2O3 deposited by atomic layer deposition (ALD) beneath the SiO2 layer. Owing to superior coverage and protection, the double-layers passivation process resulted in a three-order lower leakage current of μLEDs in the 5 μm chip-sized μLED arrays. Furthermore, higher light output power of μLEDs was observed in each chip-sized μLED array with double layers passivation. Particularly, the highest EQE value 21.9% of μLEDs array with 5 μm × 5 μm chip size was achieved with the double-layers passivation. The EQE value of μLEDs array was improved by 4.4 times by introducing the double-layers passivation as compared with that of μLEDs array with single layer passivation. Finally, more uniform light emission patterns were observed in the μLEDs with 5 μm × 5 μm chip size fabricated by double-layer passivation process using ImageJ software.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    本研究旨在通过在钛上施加双层羟基磷灰石(HA)氧化锆(ZrO2)涂层来评估成骨细胞和抗菌活性,从而确认这两种材料的协同作用。
    本研究中使用的标本分为四组:对照组(抛光钛;T组)和三个实验组:TH组(射频磁控溅射HA沉积钛),Z组(ZrO2ALD沉积钛),和组ZH(RF磁控溅射HA和ZrO2ALD沉积钛)。变形链球菌(S.突变体)使用结晶紫测定法评估表面。附着力,扩散,和MC3T3-E1细胞的分化,小鼠成骨细胞系,通过WST-8测定和ALP测定进行评估。
    组Z显示变形链球菌的粘附力降低(p<0.05)和成骨细胞活力提高(p<0.0083)。TH组和ZH组显示变形链球菌的粘附减少(p<0.05),成骨细胞增殖和细胞分化增加(p<0.0083)。ZH组表现出最高的抗菌和成骨细胞分化。
    总之,沉积在钛上的双层HA和ZrO2在抑制变形链球菌的粘附方面更有效,诱导生物膜形成,并通过两种材料的协同作用增加参与骨整合的成骨细胞分化。
    UNASSIGNED: This study aimed to confirm the synergy effect of these two materials by evaluating osteoblast and antibacterial activity by applying a double-layered hydroxyapatite(HA) zirconium oxide(ZrO2) coating to titanium.
    UNASSIGNED: The specimens used in this study were divided into four groups: a control group (polished titanium; group T) and three experimental groups: Group TH (RF magnetron sputtered HA deposited titanium), Group Z (ZrO2 ALD deposited titanium), and Group ZH (RF magnetron sputtered HA and ZrO2 ALD deposited titanium). The adhesion of Streptococcus mutans (S.mutans) to the surface was assessed using a crystal violet assay. The adhesion, proliferation, and differentiation of MC3T3-E1 cells, a mouse osteoblastic cell line, were assessed through a WST-8 assay and ALP assay.
    UNASSIGNED: Group Z showed a decrease in the adhesion of S. mutans (p < 0.05) and an improvement in osteoblastic viability (p < 0.0083). Group TH and ZH showed a decrease in adhesion of S. mutans (p < 0.05) and an increase in osteoblastic cell proliferation and cell differentiation (p < 0.0083). Group ZH exhibited the highest antibacterial and osteoblastic differentiation.
    UNASSIGNED: In conclusion double-layered HA and ZrO2 deposited on titanium were shown to be more effective in inhibiting the adhesion of S. mutans, which induced biofilm formation, and increasing osteoblastic differentiation involved in osseointegration by the synergistic effect of the two materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过使用三甲基铟(TMIn)的等离子体增强原子层沉积(PEALD)制备Sn掺杂的氧化铟(ITO)半导体纳米薄膜,四(二甲基氨基)锡(TDMASn),和O2等离子体作为In的来源,Sn和O,分别。对于ITO纳米膜的沉积,观察到150℃的共享温度窗口200℃。发现将Sn引入到氧化铟中会增加ITO膜中的氧浓度并抑制结晶。此外,观察到In和Sn的两种氧化态,分别。随着ITO薄膜中In-O/Sn-O界面的增加,In3+离子的相对百分比增加,Sn4+离子的相对百分比减少,它是由界面竞争反应产生的。通过优化通道组件,In0.77Sn0.23O1.11薄膜晶体管(TFT)表现出高性能,包括52.7cm2/Vs的μFE,和5×109的高离子/IOFF。此外,该器件在3MV/cm和85°C时表现出优异的正偏置温度应力稳定性,即,4ks应力后的最小Vth偏移为0.017V。这项工作强调了通过ALD将Sn掺杂的氧化铟半导体纳米膜成功应用于TFT。
    Sn-doped indium oxide (ITO) semiconductor nano-films are fabricated by plasma-enhanced atomic layer deposition using trimethylindium (TMIn), tetrakis(dimethylamino)tin (TDMASn), and O2plasma as the sources of In, Sn and O, respectively. A shared temperature window of 150 °C- 200 °C is observed for the deposition of ITO nano-films. The introduction of Sn into indium oxide is found to increase the concentration of oxygen into the ITO films and inhibit crystallization. Furthermore, two oxidation states are observed for In and Sn, respectively. With the increment of interfaces of In-O/Sn-O in the ITO films, the relative percentage of In3+ions increases and that of Sn4+decreases, which is generated by interfacial competing reactions. By optimizing the channel component, the In0.77Sn0.23O1.11thin-film transistors (TFTs) demonstrate high performance, includingμFEof 52.7 cm2V-1s-1, and a highION/IOFFof ∼5 × 109. Moreover, the devices show excellent positive bias temperature stress stability at 3 MV cm-1and 85 °C, i.e. a minimalVthshift of 0.017 V after 4 ks stress. This work highlights the successful application of ITO semiconductor nano-films by ALD for TFTs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    信息时代经济的增长推动微电子对先进材料的追求,受到对“超越CMOS”和“超越摩尔”范式的探索的刺激。原子薄2D材料,如过渡金属二硫属化合物(TMDC),由于其特性和缺陷工程能力,显示出下一代微电子的巨大潜力。这个观点深入研究了原子精密处理(APP)技术,如原子层沉积(ALD),外延,原子层蚀刻(ALE),以及用于2D材料制造和修改的原子精密先进制造(APAM),对未来的半导体器件至关重要。ALD和外延等添加剂APP方法提供了对成分的精确控制,结晶度原子尺度的厚度,促进高性能器件集成。减法APP技术,如ALE,专注于2D材料功能和制造的原子级蚀刻控制。在APAM中,改性技术旨在控制原子级缺陷,提供定制的设备功能和改进的性能。在基于2D材料的微电子中实现最佳性能和能源效率需要一个全面的方法,包括基本的理解,流程建模,和高通量计量。APP在2D材料中的前景看好,持续的发展有望影响制造业和基础材料科学。与先进的计量学和协同设计框架的集成将加速实现由2D材料实现的下一代微电子技术。
    The growth of the information era economy is driving the pursuit of advanced materials for microelectronics, spurred by exploration into \"Beyond CMOS\" and \"More than Moore\" paradigms. Atomically thin 2D materials, such as transition metal dichalcogenides (TMDCs), show great potential for next-generation microelectronics due to their properties and defect engineering capabilities. This perspective delves into atomic precision processing (APP) techniques like atomic layer deposition (ALD), epitaxy, atomic layer etching (ALE), and atomic precision advanced manufacturing (APAM) for the fabrication and modification of 2D materials, essential for future semiconductor devices. Additive APP methods like ALD and epitaxy provide precise control over composition, crystallinity, and thickness at the atomic scale, facilitating high-performance device integration. Subtractive APP techniques, such as ALE, focus on atomic-scale etching control for 2D material functionality and manufacturing. In APAM, modification techniques aim at atomic-scale defect control, offering tailored device functions and improved performance. Achieving optimal performance and energy efficiency in 2D material-based microelectronics requires a comprehensive approach encompassing fundamental understanding, process modeling, and high-throughput metrology. The outlook for APP in 2D materials is promising, with ongoing developments poised to impact manufacturing and fundamental materials science. Integration with advanced metrology and codesign frameworks will accelerate the realization of next-generation microelectronics enabled by 2D materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于自对准技术的区域选择性沉积(ASD)已经成为解决超细图案化工艺期间的未对准问题的有前途的解决方案。尽管有潜力,面积选择性损失超过一定厚度的问题在ASD应用中仍然很关键。这项研究报告了一种新颖的方法,可以随着厚度的增加而维持Ir膜的面积选择性。使用三羰基-(1,2,3-η)-1,2,3-三(叔丁基)-环丙烯基-铱和O3,使用原子层沉积在Al2O3上作为生长区域和SiO2作为非生长区域。O3表现出双重效应,促进沉积和蚀刻。在稳态增长机制中,O3仅有助于沉积,而在最初的生长阶段,长时间暴露于O3会通过形成挥发性IrO3来蚀刻最初形成的孤立Ir核。重要的是,与非生长区域(SiO2)相比,生长区域(Al2O3)上的初始蚀刻需要更长的O3曝光。通过控制O3注入时间,通过抑制非生长区域上的成核,即使在25nm的厚度以上也保持区域选择性。这些发现阐明了使用O3的ASD的基本机制,并为推进薄膜技术提供了有希望的途径。此外,这种方法有望将ASD扩展到其他容易形成挥发性物质的金属。
    Area-selective deposition (ASD) based on self-aligned technology has emerged as a promising solution for resolving misalignment issues during ultrafine patterning processes. Despite its potential, the problems of area-selectivity losing beyond a certain thickness remain critical in ASD applications. This study reports a novel approach to sustain the area-selectivity of Ir films as the thickness increases. Ir films are deposited on Al2O3 as the growth area and SiO2 as the non-growth area using atomic-layer-deposition with tricarbonyl-(1,2,3-η)-1,2,3-tri(tert-butyl)-cyclopropenyl-iridium and O3. O3 exhibits a dual effect, facilitating both deposition and etching. In the steady-state growth regime, O3 solely contributes to deposition, whereas in the initial growth stages, longer exposure to O3 etches the initially formed isolated Ir nuclei through the formation of volatile IrO3. Importantly, longer O3 exposure is required for the initial etching on the growth area(Al2O3) compared to the non-growth area(SiO2). By controlling the O3 injection time, the area selectivity is sustained even above a thickness of 25 nm by suppressing nucleation on the non-growth area. These findings shed light on the fundamental mechanisms of ASD using O3 and offer a promising avenue for advancing thin-film technologies. Furthermore, this approach holds promise for extending ASD to other metals susceptible to forming volatile species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    许多疫苗需要多剂量才能发挥全部功效,对患者的坚持和保护构成障碍。实现完全疫苗接种的一种解决方案可以用含有多个受控释放剂量的单次施用疫苗来实现。在这项研究中,使用原子层沉积(ALD)制备延迟释放疫苗,用氧化铝包被含抗原的粉末.使用体外和体内方法,我们表明,增加涂层厚度控制抗原释放和抗体反应的动力学,从几周到几个月不等。我们的结果与抗原释放和抗体响应时间的可调控制水平建立了体外-体内相关性,并有可能影响未来的疫苗设计。
    Many vaccines require multiple doses for full efficacy, posing a barrier for patient adherence and protection. One solution to achieve full vaccination may be attained with single-administration vaccines containing multiple controlled release doses. In this study, delayed-release vaccines were generated using atomic layer deposition (ALD) to coat antigen-containing powders with alumina. Using in vitro and in vivo methods, we show that increasing the coat thickness controls the kinetics of antigen release and antibody response, ranging from weeks to months. Our results establish an in vitro-in vivo correlation with a level of tunable control over the antigen release and antibody response times with the potential to impact future vaccine design.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    富NiLi(NixCoyMnz)O2(x≥0.8)-层状氧化物材料作为电动和混合动力汽车中高能量密度锂离子电池的阴极材料非常有希望。然而,它们与电解质发生副反应的趋势以及它们在循环锂化/脱锂过程中的结构不稳定性损害了它们的电化学循环性能,对大规模应用构成挑战。本文探讨了使用原子层沉积(ALD)系统在富镍Li(Ni0.8Co0.1Mn0.1)O2(NCM811)阴极材料上的Al2O3涂层的应用。表征技术,包括X射线衍射,扫描电子显微镜,和透射电子显微镜,用于评估氧化铝涂层对NCM811的形貌和晶体结构的影响。结果证实,在不改变NCM811的微观结构和晶格结构的情况下,获得了超薄Al2O3涂层。氧化铝涂覆的NCM811在1C速率下在2.8-4.5V的电压范围内表现出改善的循环稳定性和容量保持率。具体来说,改性NCM811的容量保持率为5%,9.11%,在4.3、4.4和4.5V的工作电压下,比原始材料高11.28%,分别。这种增强的性能归因于减少的电极-电解质相互作用,导致较少的副反应和提高结构稳定性。因此,具有这种涂覆工艺的NCM811@Al2O3成为高容量锂离子电池正极材料的极具吸引力的候选材料。
    Ni-rich Li(NixCoyMnz)O2 (x ≥ 0.8)-layered oxide materials are highly promising as cathode materials for high-energy-density lithium-ion batteries in electric and hybrid vehicles. However, their tendency to undergo side reactions with electrolytes and their structural instability during cyclic lithiation/delithiation impairs their electrochemical cycling performance, posing challenges for large-scale applications. This paper explores the application of an Al2O3 coating using an atomic layer deposition (ALD) system on Ni-enriched Li(Ni0.8Co0.1Mn0.1)O2 (NCM811) cathode material. Characterization techniques, including X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, were used to assess the impact of alumina coating on the morphology and crystal structure of NCM811. The results confirmed that an ultrathin Al2O3 coating was achieved without altering the microstructure and lattice structure of NCM811. The alumina-coated NCM811 exhibited improved cycling stability and capacity retention in the voltage range of 2.8-4.5 V at a 1 C rate. Specifically, the capacity retention of the modified NCM811 was 5%, 9.11%, and 11.28% higher than the pristine material at operating voltages of 4.3, 4.4, and 4.5 V, respectively. This enhanced performance is attributed to reduced electrode-electrolyte interaction, leading to fewer side reactions and improved structural stability. Thus, NCM811@Al2O3 with this coating process emerges as a highly attractive candidate for high-capacity lithium-ion battery cathode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    通过掺杂适当的元素,可以有效且可控地调节ZnO的物理性质。用具有不成对电子自旋的3D过渡金属掺杂ZnO薄膜(例如,Fe,Co,Ni,等。)是特别感兴趣的,因为它可以使层中的磁现象。原子层沉积(ALD)是最先进的技术,这确保了整个沉积过程的高精度,产生具有可控组成和厚度的均匀薄膜,形成光滑和尖锐的界面。在这项工作中,使用ALD制备Ni或Fe掺杂的ZnO薄膜。通过测量标准电流-电压(I-V)研究了薄膜的介电和电性能,电容电压(C-V),以及不同温度下的电容-频率(C-f)特性。光谱椭圆光度法用于评估层的光学带隙。我们确定掺杂剂强烈影响层的电和介电性能。结果提供了证据,表明不同的极化机制主导了Ni和Fe掺杂薄膜的介电响应。
    The physical properties of ZnO can be tuned efficiently and controllably by doping with the proper element. Doping of ZnO thin films with 3D transition metals that have unpaired electron spins (e.g., Fe, Co, Ni, etc.) is of particular interest as it may enable magnetic phenomena in the layers. Atomic layer deposition (ALD) is the most advanced technique, which ensures high accuracy throughout the deposition process, producing uniform films with controllable composition and thickness, forming smooth and sharp interfaces. In this work, ALD was used to prepare Ni- or Fe-doped ZnO thin films. The dielectric and electrical properties of the films were studied by measuring the standard current-voltage (I-V), capacitance-voltage (C-V), and capacitance-frequency (C-f) characteristics at different temperatures. Spectral ellipsometry was used to assess the optical bandgap of the layers. We established that the dopant strongly affects the electric and dielectric behavior of the layers. The results provide evidence that different polarization mechanisms dominate the dielectric response of Ni- and Fe-doped films.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    这项研究研究了Mg-2Zn-0.46Y-0.5Nd(wt。%)在生理应力条件下体外具有氟化涂层和原子层沉积(ALD)衍生的氧化锆(ZrO2)涂层的合金板和螺钉。将合成聚氨酯半可食复制品分裂并固定为以下三组镁合金板和螺钉:不进行额外的表面涂层处理(A组),使用氟化涂料(B组),并且具有双氟化和ALD衍生的100nmZrO2涂层(C组)。向远端骨段施加1-10N的循环应力,并进行了4周的模拟体液浸入试验,以研究剩余的材料体积和不同组的机械性能。与A组和B组相比,在双重MgF2/ZrO2涂层的保护下,镁合金板和螺钉头区域的降解速率显着减慢(p<0.01)。各组间螺杆轴区降解率无显著差异(p=0.077)。与氟化物涂层相比,双重MgF2/ZrO2涂层在14天的体外SBF浸没测试后保持了镁合金板和螺钉的机械强度。我们得出的结论是,在生理应力条件下,双相MgF2/ZrO2涂层对镁合金板和螺钉具有一定的保护作用。
    This study investigated the corrosion resistance and mechanical properties of Mg-2Zn-0.46Y-0.5Nd (wt.%) alloy plates and screws with fluorinated coatings and atomic layer deposition (ALD)-derived zirconia (ZrO2) coatings in vitro under physiological stress conditions. Synthetic polyurethane hemimandible replicas were split and fixed as the following three groups of magnesium alloy plates and screws: no additional surface coating treatment (Group A), with fluorinated coatings (Group B), and with duplex fluorinated and ALD-derived 100 nm ZrO2 coatings (Group C). A circulating stress of 1-10 N was applied to the distal bone segment, and a 4-week simulated body fluid immersion test was employed to study the remaining material volume and the mechanical properties of the different groups. Compared with Group A and Group B, the degradation rate of magnesium alloy plates and screws\' head regions was significantly slowed down under the protection of duplex MgF2/ZrO2 coatings (p < 0.01). There was no significant difference in the degradation rate of the screw shaft region between groups (p = 0.077). In contrast to fluoride coatings, duplex MgF2/ZrO2 coatings maintained the mechanical strength of magnesium alloy plates and screws after a 14 day in vitro SBF immersion test. We conclude that duplex MgF2/ZrO2 coatings exhibited a certain protective effect on the Mg alloy plates and screws under physiological stress conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在这项工作中,氧化钨(WO3)籽晶和覆盖层对铁电La掺杂(Hf,Zr)O2(La:HZO)基电容器,设计具有后端(BEOL)兼容性,进行了系统的调查。在整个制造过程中和在器件循环期间,WO3覆盖层向La:HZO层提供氧。这有助于La:HZO层内氧空位(Vo)的an灭,从而稳定其铁电正交相,并导致电容器中剩余极化(Pr)值的增加。此外,WO3覆盖层的有效性取决于HZO膜的晶种层,建议应采用种子层和覆盖层的适当组合来最大化铁电响应。最后,TiN/TiO2种子层/La:HZO/WO3盖层/TiN电容器是通过一套完整的原子层沉积(ALD)工艺成功制造和优化,在2.5MV/cm的电场下实现超过109个循环的优异的2Pr值和耐久性值。WO3覆盖层有望为厚度减小的掺杂HZO电容器提供可行的解决方案,解决Vo水平升高的挑战,这有利于四方相并导致低2Pr值。
    In this work, the impact of a tungsten oxide (WO3) seed and capping layer for ferroelectric La-doped (Hf, Zr)O2 (La:HZO) based capacitors, designed with back-end-of-line (BEOL) compatibility, is systematically investigated. The WO3 capping layer supplies oxygen to the La:HZO layer throughout the fabrication process and during device cycling. This facilitates the annihilation of oxygen vacancies (Vo) within the La:HZO layer, thereby stabilizing its ferroelectric orthorhombic phase and resulting in an increase of the remanent polarization (Pr) value in the capacitor. Moreover, the effectiveness of the WO3 capping layer depends on the seed layer of the HZO film, suggesting that proper combination of the seed and capping layers should be employed to maximize the ferroelectric response. Finally, a TiN/TiO2 seed layer/La:HZO/WO3 capping layer/TiN capacitor is successfully fabricated and optimized by a complete set of atomic layer deposition (ALD) processes, achieving a superior 2Pr value and endurance value of more than 109 cycles at an electric field of 2.5 MV/cm. The WO3 capping layer is anticipated to offer a viable solution for doped HZO capacitors with reduced thickness, addressing the challenge of elevated Vo levels that favor the tetragonal phase and result in low 2Pr values.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号