astrogenesis

天体发生
  • 文章类型: Journal Article
    神经系统的发育受与细胞外微环境在时间和空间上相互作用的许多细胞内分子和细胞信号的调节。大脑中的三种主要细胞类型,即,神经元和两种类型的神经胶质细胞(星形胶质细胞和少突胶质细胞),在整个生命过程中从常见的多能神经干细胞(NSC)产生。然而,NSC从一开始就不具有这种多潜力。在皮质发育过程中,NSC响应于时空调节的细胞内在表观遗传改变和外在因素的组合而依次获得分化成神经元和神经胶质细胞的能力。大脑发育完成后,有限的NSC群体仍然存在于成人大脑中,并继续产生神经元(成人神经发生),从而有助于学习和记忆。脑发育和成人神经发生的许多生物学方面通过神经干细胞的行为控制受到表观遗传变化的调节。表观遗传失调也涉及各种脑疾病的发病机理。这里,我们介绍了NSC行为的表观遗传调控及其在脑部疾病中的失调的最新进展。
    The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    小胶质细胞作为中枢神经系统中的固有免疫细胞是高度异质的。虽然小胶质细胞的促炎表型是由疾病状态下的代谢转化驱动的,小胶质细胞代谢重编程的机制以及它是否影响周围的星形胶质细胞祖细胞还没有很好的阐明。这里,我们说明了在胚胎发育过程中小胶质细胞代谢和星象发生之间的联系。转录因子BTB和CNC同源1(Bach1)通过抑制两种关键酶来减少乳酸的产生,HK2和GAPDH,在糖酵解期间。小胶质细胞的代谢扰动降低了Lrrc15启动子处乳酸依赖性组蛋白修饰富集。小胶质细胞衍生的LRRC15与CD248相互作用,参与JAK/STAT途径并影响星象发生。此外,Bach1cKO-Cx3小鼠表现出异常的神经元分化和焦虑样行为。总之,这项工作表明,大脑发育早期小胶质细胞代谢稳态的维持与星象发生密切相关,提供对天体形成和相关疾病的见解。
    Microglia are highly heterogeneous as resident immune cells in the central nervous system. Although the proinflammatory phenotype of microglia is driven by the metabolic transformation in the disease state, the mechanism of metabolic reprogramming in microglia and whether it affects surrounding astrocyte progenitors have not been well elucidated. Here, we illustrate the communication between microglial metabolism and astrogenesis during embryonic development. The transcription factor BTB and CNC homology 1 (Bach1) reduces lactate production by inhibiting two key enzymes, HK2 and GAPDH, during glycolysis. Metabolic perturbation of microglia reduces lactate-dependent histone modification enrichment at the Lrrc15 promoter. The microglia-derived LRRC15 interacts with CD248 to participate in the JAK/STAT pathway and influence astrogenesis. In addition, Bach1cKO-Cx3 mice exhibit abnormal neuronal differentiation and anxiety-like behaviors. Altogether, this work suggests that the maintenance of microglia metabolic homeostasis during early brain development is closely related to astrogenesis, providing insights into astrogenesis and related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用贝沙罗汀治疗,选择性类维生素AX受体(RXR)激动剂,显着改善各种神经退行性动物模型的行为障碍。此外,它激活成年小鼠大脑中的神经发育和可塑性通路。我们的目的是研究贝沙罗汀激活RXR对成年神经干细胞(aNSC)及其细胞系的影响。为了实现这一点,我们处理了从成年大鼠脑室下区(SVZ)分离的神经干细胞,从增殖阶段到分化状态。结果表明,贝沙罗汀处理的aNSC表现出增加的BrdU掺入,SOX2+分裂细胞对,和细胞从神经球迁移,揭示该治疗促进SVZ-aNCS的自我更新增殖和细胞运动。此外,贝沙罗汀诱导细胞命运转变,其特征在于GFAP+/S100B+分化的星形胶质细胞显著增加,揭示了激活的RXR参与了天体形成。在神经元谱系中,命运的转变被贝沙罗汀诱导的NeuN+核增强和神经突网络生长抵消,表明RXR激动剂在后期刺激SVZ-aNCS神经元分化。这些发现在RXR激活之间建立了新的联系,成人大脑中的星形和神经发生,并有助于开发针对核受体的神经修复治疗策略。
    Treatment with bexarotene, a selective retinoid X receptor (RXR) agonist, significantly improves behavioral dysfunctions in various neurodegenerative animal models. Additionally, it activates neurodevelopmental and plasticity pathways in the brains of adult mice. Our objective was to investigate the impact of RXR activation by bexarotene on adult neural stem cells (aNSC) and their cell lineages. To achieve this, we treated NSCs isolated from the subventricular zone (SVZ) of adult rat brains from the proliferative stage to the differentiated status. The results showed that bexarotene-treated aNSC exhibited increased BrdU incorporation, SOX2+ dividing cell pairs, and cell migration from neurospheres, revealing that the treatment promotes self-renewing proliferation and cell motility in SVZ-aNCS. Furthermore, bexarotene induced a cell fate shift characterized by a significant increase in GFAP+/S100B+ differentiated astrocytes, which uncovers the participation of activated-RXR in astrogenesis. In the neuronal lineage, the fate shift was counteracted by bexarotene-induced enhancement of NeuN+ nuclei together with neurite network outgrowth, indicating that the RXR agonist stimulates SVZ-aNCS neuronal differentiation at later stages. These findings establish new connections between RXR activation, astro- and neurogenesis in the adult brain, and contribute to the development of therapeutic strategies targeting nuclear receptors for neural repair.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    放射治疗(RT)是中枢神经系统(CNS)肿瘤的关键治疗方式,但对健康CNS组织的毒性仍然是一个挑战。此外,在核灾难或太空旅行期间,环境暴露于辐射存在中枢神经系统毒性的风险。然而,辐射诱导中枢神经系统毒性的潜在机制尚不完全清楚.神经祖细胞(NPCs)对辐射高度敏感,导致海马神经发生减少。这项研究旨在表征一种新型平台,该平台利用培养为3D神经球(NSps)的大鼠NPC来筛选有和没有辐射暴露的实验药物的安全性和有效性。通过测量球体体积和神经元分化标志物Nestin和GFAP以及增殖标志物Ki67的表达来评估辐射对NSp生长和分化的影响。辐射暴露抑制了NSp的生长,减少增殖,GFAP表达增加,表明星形细胞分化。RNA测序分析支持了这些发现,显示缺口的上调,BMP2/4,S100b,和GFAP基因在星形过程中的表达。通过概括辐射诱导的毒性和星形细胞分化,这种单NSp培养系统提供了一种高通量的临床前模型,用于评估各种放射方式的效果,并评估潜在治疗性干预措施联合放射的安全性和有效性.
    Radiation therapy (RT) is a crucial treatment modality for central nervous system (CNS) tumors but toxicity to healthy CNS tissues remains a challenge. Additionally, environmental exposure to radiation during nuclear catastrophes or space travel presents a risk of CNS toxicity. However, the underlying mechanisms of radiation-induced CNS toxicity are not fully understood. Neural progenitor cells (NPCs) are highly radiosensitive, resulting in decreased neurogenesis in the hippocampus. This study aimed to characterize a novel platform utilizing rat NPCs cultured as 3D neurospheres (NSps) to screen the safety and efficacy of experimental drugs with and without radiation exposure. The effect of radiation on NSp growth and differentiation was assessed by measuring sphere volume and the expression of neuronal differentiation markers Nestin and GFAP and proliferation marker Ki67. Radiation exposure inhibited NSp growth, decreased proliferation, and increased GFAP expression, indicating astrocytic differentiation. RNA sequencing analysis supported these findings, showing upregulation of Notch, BMP2/4, S100b, and GFAP gene expression during astrogenesis. By recapitulating radiation-induced toxicity and astrocytic differentiation, this single-NSp culture system provides a high-throughput preclinical model for assessing the effects of various radiation modalities and evaluates the safety and efficacy of potential therapeutic interventions in combination with radiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Editorial
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在发育中的大脑皮层中,神经干细胞(NSC)产生神经元和神经胶质细胞,根据复杂的时空轨迹。在这方面,一个关键问题是NSC如何在时间和空间上致力于不同的神经谱系。克隆分析是解决此问题的强大工具。在这里,我们描述了一种简单的克隆测定方案,可用于解剖NSC谱系承诺及其背后的分子机制。具有独特时空起源的NSC,和/或经历过不同的分子操作,以低密度电镀,并允许区分几天。然后,对所得克隆进行系统免疫分析,可以量化其NSC祖先对神经元和星形胶质细胞命运的承诺。
    Within the developing cerebral cortex, neural stem cells (NSCs) give rise to neurons and glial cells, according to complex spatio-temporal trajectories. In this respect, a key issue is how NSCs are committed to different neural lineages in time and space. Clonal assays are a powerful tool to address this issue. Here we describe an easy clonal assay protocol employable to dissect NSCs lineage commitment and molecular mechanisms underlying it. NSCs of distinctive spatio-temporal origin, and/or having undergone different molecular manipulations, are plated at low density and allowed to differentiate for a few days. Then, systematic immunoprofiling of the resulting clones allows to quantify commitment of their NSC ancestors to neuronal and astroglial fates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    星形胶质细胞作为神经元电路的裸露支架的愿景已被大大推翻。星形胶质细胞发挥神经营养功能,而且还积极参与支持突触传递和校准血液循环。在小鼠模型中进行的研究揭示了它们功能的许多方面,然而,有证据表明小鼠和人类星形胶质细胞之间存在许多差异,从它们的发育开始,包括形态学,实现完全成熟时的转录组和生理变化。人类独特的卓越认知能力的进化竞赛极大地影响了新皮层的结构,连同神经元电路,星形胶质细胞也受到物种特异性特性的影响。在这次审查中,我们总结了鼠和人类星形胶质细胞之间的差异,特别关注新大脑皮层,在全景视图中,从它们的发育起源开始,包括标记人类星形胶质细胞独特性的所有结构和分子差异。
    The vision of astroglia as a bare scaffold to neuronal circuitry has been largely overturned. Astrocytes exert a neurotrophic function, but also take active part in supporting synaptic transmission and in calibrating blood circulation. Many aspects of their functioning have been unveiled from studies conducted in murine models, however evidence is showing many differences between mouse and human astrocytes starting from their development and encompassing morphological, transcriptomic and physiological variations when they achieve complete maturation. The evolutionary race toward superior cognitive abilities unique to humans has drastically impacted neocortex structure and, together with neuronal circuitry, astrocytes have also been affected with the acquisition of species-specific properties. In this review, we summarize diversities between murine and human astroglia, with a specific focus on neocortex, in a panoramic view that starts with their developmental origin to include all structural and molecular differences that mark the uniqueness of human astrocytes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水通道蛋白4(AQP4)是标记室管膜细胞和星形胶质细胞的脑胶质标记,是负责实质液体平衡的主要水通道。然而,在大脑发育中,AQP4是神经胶质干细胞的标志物,在小儿脑积水的病理生理中起着至关重要的作用。由于缺乏前体和中间阶段的生物标志物,阻碍了胶质生成的表征,因此需要对脑积水的病因有更深入的了解。本手稿是对AQP4作为神经胶质发生的可能生物标志物及其在小儿脑积水中的影响的当前研究景观的重点综述,强调反应性星形胶质增生。目的是了解脑积水和正常生理条件下的大脑发育。
    Aquaporin 4 (AQP4) is a cerebral glial marker that labels ependymal cells and astrocytes\' endfeet and is the main water channel responsible for the parenchymal fluid balance. However, in brain development, AQP4 is a marker of glial stem cells and plays a crucial role in the pathophysiology of pediatric hydrocephalus. Gliogenesis characterization has been hampered by a lack of biomarkers for precursor and intermediate stages and a deeper understanding of hydrocephalus etiology is needed. This manuscript is a focused review of the current research landscape on AQP4 as a possible biomarker for gliogenesis and its influence in pediatric hydrocephalus, emphasizing reactive astrogliosis. The goal is to understand brain development under hydrocephalic and normal physiologic conditions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有碱性螺旋-环-螺旋(bHLH)基序的转录因子可以控制神经元和少突胶质细胞的神经祖细胞命运决定。bHLH转录因子如何调节星象发生仍然是未知的。这里,我们报道了NPAS3,一种bHLH转录因子,是天体形成的关键调节剂。Npas3缺乏损害皮质星象发生,与大脑发育异常和自闭症样行为相关。单细胞转录组显示,Npas3敲除在从放射状神经胶质细胞到星形胶质细胞的分化轨迹中诱导异常过渡状态。对原代皮质星形胶质细胞中染色质免疫沉淀测序数据的分析表明,NPAS3结合靶标涉及脑发育和突触组织的功能。共培养测定进一步表明NPAS3受损的星形发生在野生型神经元中诱导突触缺陷。野生型皮质中NPAS3的星形胶质细胞特异性敲除导致与自闭症核心症状相关的突触和行为异常。一起,我们的研究结果表明,转录因子NPAS3调节星形发生及其随后对大脑发育和行为的影响.
    Transcription factors with basic-helix-loop-helix (bHLH) motifs can control neural progenitor fate determination to neurons and oligodendrocytes. How bHLH transcription factors regulate astrogenesis remains largely unknown. Here, we report that NPAS3, a bHLH transcription factor, is a critical regulator of astrogenesis. Npas3 deficiency impairs cortical astrogenesis, correlating with abnormal brain development and autistic-like behaviors. Single-cell transcriptomes reveal that Npas3 knockout induces abnormal transition states in the differentiation trajectories from radial glia to astrocytes. Analysis of chromatin immunoprecipitation sequencing data in primary cortical astrocytes shows that NPAS3 binding targets are involved in functions of brain development and synapse organization. Co-culture assay further indicates that NPAS3-impaired astrogenesis induces synaptic deficits in wild-type neurons. Astrocyte-specific knockdown of NPAS3 in wild-type cortex causes synaptic and behavioral abnormalities associated with the core symptoms in autism. Together, our findings suggest that transcription factor NPAS3 regulates astrogenesis and its subsequent consequences for brain development and behavior.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元的大小,形成新生儿大脑皮层的星形胶质细胞和少突胶质细胞补体在很大程度上取决于胶质干细胞产生谱系定向祖细胞的速率,而后者发展为成熟细胞类型。这里,我们调查了pallial干细胞\'(SCs)对星型发生的空间衔接以及定向星形胶质细胞祖细胞(APs)向分化星形胶质细胞的进展,通过对苍白前体的克隆和动力学分析。我们发现尾内侧(CM)SCs比rostro外侧(RL)SCs更容易发生星象,而RL承诺的AP比CM更热衷于扩散。接下来,我们通过2个关键转录因子基因掌握早期皮质原基的区域化来评估这些现象的控制,Emx2和Foxg1,通过慢病毒体细胞转基因,上位性测定,和临时救援试验。我们证明了Emx2主要通过Couptf1、Nfia、和Sox9上调,虽然Foxg1在某种程度上拮抗了这种进展,可能是通过Zbtb20的镇压。最后,我们发现Foxg1和Emx2可能不对称地和对立地参与了海马和新皮层AP表现出的独特增殖/分化行为的形成。
    Sizes of neuronal, astroglial and oligodendroglial complements forming the neonatal cerebral cortex largely depend on rates at which pallial stem cells give rise to lineage-committed progenitors and the latter ones progress to mature cell types. Here, we investigated the spatial articulation of pallial stem cells\' (SCs) commitment to astrogenesis as well as the progression of committed astroglial progenitors (APs) to differentiated astrocytes, by clonal and kinetic profiling of pallial precursors. We found that caudal-medial (CM) SCs are more prone to astrogenesis than rostro-lateral (RL) ones, while RL-committed APs are more keen to proliferate than CM ones. Next, we assessed the control of these phenomena by 2 key transcription factor genes mastering regionalization of the early cortical primordium, Emx2 and Foxg1, via lentiviral somatic transgenesis, epistasis assays, and ad hoc rescue assays. We demonstrated that preferential CM SCs progression to astrogenesis is promoted by Emx2, mainly via Couptf1, Nfia, and Sox9 upregulation, while Foxg1 antagonizes such progression to some extent, likely via repression of Zbtb20. Finally, we showed that Foxg1 and Emx2 may be implicated-asymmetrically and antithetically-in shaping distinctive proliferative/differentiative behaviors displayed by APs in hippocampus and neocortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号