arbuscular mycorrhiza

丛枝菌根
  • 文章类型: Journal Article
    丛枝菌根(AM)真菌促进植物生长,营养,适应性和胁迫耐受性,而AM真菌从宿主获得碳水化合物和脂质。互惠互利的整个过程需要在宿主根细胞的结构和功能方面进行实质性改变。这些修改最终导致丛枝的形成,这是专门的根内和高度分支的真菌结构。含有丛集的细胞经历大量重编程以托管丛集,并且GRAS转录因子家族的成员已被表征为在这些过程中起关键作用的AM诱导基因。这里,我们显示了番茄中GRAS转录因子SCL3/SlGRAS18的功能分析。SlGRAS18与SlDELLA互动,AM形成的中央调节器。SlGRAS18的沉默积极影响丛集发育和共生状态的改善,SlGRAS18沉默的植物有利于开花,因此在果实的形成和发育方面取得进展,这与叶片中矿物质营养重新分配的明显模式平行。我们的结果提高了对参与AM共生形成和建立的GRAS转录因子的认识,并为特定的遗传改变如何导致更有效的AM共生提供了实验证据。
    Arbuscular mycorrhizal (AM) fungi improve plant growth, nutrition, fitness and stress tolerance while AM fungi obtain carbohydrates and lipids from the host. This whole process of mutual benefit requires substantial alterations in the structural and functional aspects of the host root cells. These modifications ultimately culminate in the formation of arbuscules, which are specialized intraradical and highly branched fungal structures. Arbuscule-containing cells undergo massive reprogramming to hosting arbuscule and members of the GRAS transcription factor family have been characterized as AM inducible genes which play a pivotal role in these process. Here, we show a functional analysis for the GRAS transcription factor SCL3/SlGRAS18 in tomato. SlGRAS18 interacts with SlDELLA, a central regulator of AM formation. Silencing of SlGRAS18 positively impacts arbuscule development and the improvement in symbiotic status, favouring flowering and therefore progress in the formation and development of fruits in SlGRAS18 silenced plants which parallel to a discernible pattern of mineral nutrient redistribution in leaves. Our results advance the knowledge of GRAS transcription factors involved in the formation and establishment of AM symbiosis and provide experimental evidence for how specific genetic alterations can lead to more effective AM symbiosis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fpls.202.1056992。].
    [This corrects the article DOI: 10.3389/fpls.2022.1056992.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    菌根关联是塑造森林群落结构和多种生态系统功能的关键共生关系。然而,我们缺乏一个框架来预测不同菌根关联在整个生态系统多功能性的综合代理中的不同优势。这里,我们使用了包含菌根关联多样性和18个与支持相关的生态系统过程的数据集,供应,和调节服务,以研究外生菌根(EcM)关联的优势如何影响中国西南亚热带山地森林中的生态系统多功能性。同时,我们综合了EcM显性效应对森林生物群落生态系统功能的影响。我们的结果表明,海拔显着改变了EcM树的分布和真菌优势,这反过来又同时影响了多个功能。多功能随着EcM关联比例的增加而增加,支持外生菌根优势假说。同时,我们观察到EcM优势对个体生态系统功能的影响在森林生物群落之间表现出不同的关系。我们的发现强调了外生菌根优势在调节亚热带森林多功能性方面的重要性。然而,塑造生态系统功能的这种外生菌根反馈不一定在森林中推广。因此,我们认为,响应菌根组成变化的生态系统多功能性的预测可能会在空间和时间上有所不同。
    Mycorrhizal associations are key mutualisms that shape the structure of forest communities and multiple ecosystem functions. However, we lack a framework for predicting the varying dominance of distinct mycorrhizal associations in an integrated proxy of multifunctionality across ecosystems. Here, we used the datasets containing diversity of mycorrhizal associations and 18 ecosystem processes related to supporting, provisioning, and regulating services to examine how the dominance of ectomycorrhiza (EcM) associations affects ecosystem multifunctionality in subtropical mountain forests in Southwest China. Meanwhile, we synthesized the prevalence of EcM-dominant effects on ecosystem functioning in forest biomes. Our results demonstrated that elevation significantly modified the distributions of EcM trees and fungal dominance, which in turn influenced multiple functions simultaneously. Multifunctionality increased with increasing proportion of EcM associations, supporting the ectomycorrhizal-dominance hypothesis. Meanwhile, we observed that the impacts of EcM dominance on individual ecosystem functions exhibited different relationships among forest biomes. Our findings highlight the importance of ectomycorrhizal dominance in regulating multifunctionality in subtropical forests. However, this ectomycorrhizal feedback in shaping ecosystem functions cannot necessarily be generalized across forests. Therefore, we argue that the predictions for ecosystem multifunctionality in response to the shifts of mycorrhizal composition could vary across space and time.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    洛基栖息地,全球分布的生态系统,拥有多样化的生物群,包括许多特有和濒危物种。在这些环境中茁壮成长的维管植物面临着具有挑战性的非生物条件,需要不同的形态和生理适应。他们与周围微生物组的接触是,然而,对他们的适应同样重要,健身,和长期生存。然而,在这个迷人的生物生态系统中,围绕这种复杂的相互作用仍然缺乏理解。使用显微镜观察和元编码分析,我们检查了居住在岩石中的西喀尔巴厘特有灌木的根系中的真菌丰度和多样性,达芙妮刺槐(百草科)。我们探索了根相关真菌群落的多样化与研究地点的微气候变化有关。我们揭示了归因于不同生态行会的多种分类真菌群体对达芙妮根的广泛定植,主要是植物病原体,深色隔内生菌(DSE),和丛枝菌根真菌(AMF)。值得注意的是,在较冷和较温暖的微环境之间出现了分类组成和生态行会的差异。除了无所不在的AMF,温暖的地方表现出植物病原体的流行,而较冷的地点的特点是DSE占主导地位。这种真菌生物多样性,很可能是由环境引发的,这表明,在温暖地区的D.arbuscula种群可能更容易受到真菌疾病的影响,特别是在全球气候变化的背景下。
    Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物的根发挥着对生长发育至关重要的多种功能,包括锚定到土壤和水和养分的获取。这些地下器官表现出可塑性,可以根据环境线索改变其根系结构,从而适应水和养分利用率的变化。此外,根系进入与土壤微生物的相互作用,例如,在有限的植物和固氮土壤细菌之间建立的根瘤共生关系,以及涉及大多数陆地植物和肾小球菌门真菌的丛枝菌根共生关系。在过去的20年里,遗传方法允许识别和功能表征的基因所需的具体程序的根发育,根瘤和丛枝菌根共生。这些遗传研究提供了证据,表明根瘤共生程序招募了丛枝菌根共生和根发育程序的组成部分。这些程序的执行受到表观遗传变化的强烈影响-DNA甲基化和组蛋白翻译后修饰-改变染色质构象修饰关键基因的表达。在这次审查中,我们总结了最近的进展,强调了DNA甲基化和组蛋白翻译后修饰,以及染色质重塑因子和长链非编码RNA,塑造根系结构,并成功建立根瘤和丛枝菌根共生。我们预计,对特定单细胞或组织类型的根器官的动态表观遗传变化和染色质3D结构的分析将阐明我们对根发育和共生程序如何编排的理解,打开令人兴奋的问题和新的观点,以调节与养分获取相关的农艺和生态特征。
    The roots of plants play multiples functions that are essential for growth and development, including anchoring to the soil and water and nutrient acquisition. These underground organs exhibit the plasticity to modify their root system architecture in response to environmental cues allowing adaptation to change in water and nutrient availability. In addition, roots enter in mutualistic interactions with soil microorganisms, e.g. the root nodule symbiosis established between a limited group of plants and nitrogen fixing soil bacteria and the arbuscular mycorrhiza symbiosis involving most land plants and fungi of the Glomeromycetes phylum. In the past 20 years, genetic approaches allowed the identification and functional characterization of genes required for the specific programs of root development, root nodule and arbuscular mycorrhiza symbioses. These genetic studies provided evidence that the program of root nodule symbiosis recruited components of the arbuscular mycorrhiza symbiosis and the root developmental programs. The execution of these programs is strongly influenced by epigenetic changes -DNA methylation and histone post-translational modifications- that alter chromatin conformation modifying the expression of key genes. In this review, we summarize recent advances that highlighted how DNA methylation and histone post-translational modifications, as well as chromatin remodeling factors and long non-coding RNAs, shape the root system architecture and allow the successful establishment of both root nodule and arbuscular mycorrhiza symbioses. We anticipate that the analysis of dynamic epigenetic changes and chromatin 3D structure in specific single-cells or tissue types of root organs will illuminate our understanding of how root developmental and symbiotic programs are orchestrated, opening exciting questions and new perspectives to modulate agronomical and ecological traits linked to nutrient acquisition.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    磷酸盐饥饿反应(PHR)转录因子通过与磷酸盐饥饿反应基因启动子中的P1BS顺式元件结合,在调节植物的磷酸盐吸收中起着至关重要的作用。最近,PHRs还显示出通过控制许多共生基因的表达来正向调节水稻和莲花中的丛枝菌根定植。然而,它们在丛生发育中的作用尚不清楚。在Medicago,我们先前表明,丛枝降解受两种在含丛枝的细胞中高度表达的SPX蛋白控制。由于SPX蛋白与PHR结合并以磷酸盐依赖性方式抑制其活性,我们调查了丛集维护是否也受PHR调节。这里,我们表明PHR2是苜蓿磷酸盐饥饿反应的主要调节因子。phr2基因敲除显示磷酸盐饥饿反应减少,共生基因表达,和真菌定植水平。然而,形成的丛枝表现出较少的降解,提示PHR2在丛集维持中的负面作用。PHR2的过表达导致丛枝的降解增强的观察结果支持了这一点。尽管许多丛集诱导的基因在其启动子中含有P1BS元件,我们发现共生磷酸盐转运蛋白PT4启动子中的P1BS顺式元件对于含有丛集蛋白的细胞表达不是必需的。由于PHR2和SPX1/3都会对汇合维护产生负面影响,我们的结果表明,他们通过不同的机制部分控制了丛集的维护。虽然PHR2增强共生基因表达和定植,需要严格控制其在含丛集细胞中的活性,以维持紫花苜蓿的成功共生。
    Phosphate starvation response (PHR) transcription factors play essential roles in regulating phosphate uptake in plants through binding to the P1BS cis-element in the promoter of phosphate starvation response genes. Recently, PHRs were also shown to positively regulate arbuscular mycorrhizal colonization in rice and lotus by controlling the expression of many symbiotic genes. However, their role in arbuscule development has remained unclear. In Medicago, we previously showed that arbuscule degradation is controlled by two SPX proteins that are highly expressed in arbuscule-containing cells. Since SPX proteins bind to PHRs and repress their activity in a phosphate-dependent manner, we investigated whether arbuscule maintenance is also regulated by PHR. Here, we show that PHR2 is a major regulator of the phosphate starvation response in Medicago. Knockout of phr2 showed reduced phosphate starvation response, symbiotic gene expression, and fungal colonization levels. However, the arbuscules that formed showed less degradation, suggesting a negative role for PHR2 in arbuscule maintenance. This was supported by the observation that overexpression of PHR2 led to enhanced degradation of arbuscules. Although many arbuscule-induced genes contain P1BS elements in their promoters, we found that the P1BS cis-elements in the promoter of the symbiotic phosphate transporter PT4 are not required for arbuscule-containing cell expression. Since both PHR2 and SPX1/3 negatively affect arbuscule maintenance, our results indicate that they control arbuscule maintenance partly via different mechanisms. While PHR2 potentiates symbiotic gene expression and colonization, its activity in arbuscule-containing cells needs to be tightly controlled to maintain a successful symbiosis in Medicago.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    土壤呼吸(Rs)是全球碳(C)循环的主要组成部分,并受到诸如磷(P)的养分可用性的影响。然而,在P有限的亚热带森林生态系统中,Rs对P添加的响应及其潜在机制仍然知之甚少。为了解决这个问题,我们在亚热带杉木(杉木)人工林中进行了P添加实验(50kgPha-1yr-1)。我们将Rs分成异养呼吸(Rh),根呼吸(Rr),和菌根菌丝呼吸(Rm),和量化的土壤特性,微生物生物质(磷脂脂肪酸,PLFA),真菌群落组成(ITS),和胞外酶的活性。添加磷显著增加Rs和Rh,但Rr降低,不影响Rm。Further,添加P增加真菌,细菌,和总PLFA,和酚氧化酶活性。相反,施用P会降低根系生物量,并且不会改变共生真菌的相对丰度。因此,磷的富集通过异养活动促进有机质分解来增加土壤碳的排放,而不是通过根或菌根呼吸的增加。这促进了我们对亚热带森林肥力与土壤呼吸之间关系的机械理解,对预测全球变化下土壤碳排放具有重要意义。
    Soil respiration (Rs) is a major component of the global carbon (C) cycle and is influenced by the availability of nutrients such as phosphorus (P). However, the response of Rs to P addition in P-limited subtropical forest ecosystems and the underlying mechanisms remain poorly understood. To address this, we conducted a P addition experiment (50 kg P ha-1 yr-1) in a subtropical Chinese fir (Cunninghamia lanceolata) plantation forest. We separated Rs into heterotrophic respiration (Rh), root respiration (Rr), and mycorrhizal hyphal respiration (Rm), and quantified soil properties, microbial biomass (phospholipid fatty acid, PLFA), fungal community composition (ITS), and the activity of extracellular enzymes. Phosphorus addition significantly increased Rs and Rh, but decreased Rr and did not influence Rm. Further, P addition increased fungal, bacterial, and total PLFAs, and phenol oxidase activity. Conversely, P application decreased root biomass and did not alter the relative abundance of symbiotrophic fungi. Phosphorus enrichment therefore enhances soil C emissions by promoting organic matter decomposition by heterotrophic activity, rather than via increases in root or mycorrhizal respiration. This advances our mechanistic understanding of the relationship between fertility and soil respiration in subtropical forests, with implications for predicting soil C emissions under global change.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    GRAS家族所需的丛枝菌根1(RAM1)转录因子以其在双子叶植物和单子叶植物物种中丛枝菌根(AM)共生的主要调节因子的作用而闻名,在转录重编程中对于丛枝的发育和功能至关重要。在番茄中,SlGRAS27是RAM1的假定直系同源物(此处称为SlRAM1),但尚未被定性。在SlRAM1沉默的植物中观察到根的定植减少和丛枝形成受损,确认番茄中RAM1直系同源物的功能保守性。然而,出乎意料的是,SlRAM1过表达(UBIL:SlRAM1)的植物也显示出降低的菌根定植。非菌根UBIL:SlRAM1根的分析揭示了AM相关基因的整体调控和str金内酯生物合成的减少。此外,外部应用Stingolactone类似物GR244DO几乎完全逆转了SlRAM1过表达对菌根频率的负面影响。然而,它仅部分恢复了对照植物中观察到的丛枝分布的模式。我们的结果强烈表明SlRAM1在菌根化过程中具有双重调节作用,除了其公认的作为丛生发展的积极调节器的行动外,SlRAM1还参与菌根化负调控的不同机制,包括抑制stingolactone生物合成。
    The REQUIRED FOR ARBUSCULAR MYCORRHIZATION1 (RAM1) transcription factor from the GRAS family is well known for its role as a master regulator of the arbuscular mycorrhizal (AM) symbiosis in dicotyledonous and monocotyledonous species, being essential in transcriptional reprogramming for the development and functionality of the arbuscules. In tomato, SlGRAS27 is the putative orthologue of RAM1 (here named SlRAM1), but has not yet been characterized. A reduced colonization of the root and impaired arbuscule formation were observed in SlRAM1-silenced plants, confirming the functional conservation of the RAM1 orthologue in tomato. However, unexpectedly, SlRAM1-overexpressing (UBIL:SlRAM1) plants also showed decreased mycorrhizal colonization. Analysis of non-mycorrhizal UBIL:SlRAM1 roots revealed an overall regulation of AM-related genes and a reduction of strigolactone biosynthesis. Moreover, external application of the strigolactone analogue GR244DO almost completely reversed the negative effects of SlRAM1 overexpression on the frequency of mycorrhization. However, it only partially recovered the pattern of arbuscule distribution observed in control plants. Our results strongly suggest that SlRAM1 has a dual regulatory role during mycorrhization and, in addition to its recognized action as a positive regulator of arbuscule development, it is also involved in different mechanisms for the negative regulation of mycorrhization, including the repression of strigolactone biosynthesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Research Support, Non-U.S. Gov\'t
    暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Taxus,针叶树的一个属,以其药用意义而闻名,IUCN将几种物种归类为不同的威胁类别,因此面临各种保护挑战。众所周知的化疗药物紫杉醇的树皮和叶子的过度收获导致其种群减少。探索紫杉属的菌根关系至关重要,由于菌根真菌在营养中起着关键作用,增长,和生态复原力。紫杉主要与丛枝菌根真菌(AM)相关,报道表明外生菌根(EM)或双重菌根关联。这篇评论巩固了有关紫杉属物种中菌根关联的现有文献,注重结构性,生理,和分子方面。AM协会在Taxus中有据可查,影响植物生理和繁殖。相反,EM协会仍然相对缺乏研究,有限的证据表明它们的发生。该综述强调了进一步研究以阐明紫杉中双重菌根关联的重要性,强调需要进行详细的结构和生理检查,以了解它们对生长和生存的影响。
    Taxus, a genus of conifers known for its medicinal significance, faces various conservation challenges with several species classified under different threat categories by the IUCN. The overharvesting of bark and leaves for the well-known chemotherapy drug paclitaxel has resulted in its population decline. Exploring the mycorrhizal relationship in Taxus is of utmost importance, as mycorrhizal fungi play pivotal roles in nutrition, growth, and ecological resilience. Taxus predominantly associates with arbuscular mycorrhizal fungi (AM), and reports suggest ectomycorrhizal (EM) or dual mycorrhizal associations as well. This review consolidates existing literature on mycorrhizal associations in Taxus species, focusing on structural, physiological, and molecular aspects. AM associations are well-documented in Taxus, influencing plant physiology and propagation. Conversely, EM associations remain relatively understudied, with limited evidence suggesting their occurrence. The review highlights the importance of further research to elucidate dual mycorrhizal associations in Taxus, emphasizing the need for detailed structural and physiological examinations to understand their impact on growth and survival.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号