aqueous zinc-ion batteries

水性锌离子电池
  • 文章类型: Journal Article
    水性锌离子电池(AZIBs)因其可负担性而备受推崇,稳定性,安全,和生态友好。然而,它们的实际应用受到严重的副反应和锌(Zn)树枝状晶体在Zn金属阳极表面上的形成的阻碍。在这项研究中,我们使用四氢呋喃醇(THFA),一种高效且具有成本效益的醇醚电解质,缓解这些问题,实现超长寿命AZIB。理论计算和实验结果表明,THFA作为氢键供体和受体,通过双位点氢键有效锚定H2O分子。这种机制限制了自由水分子的活性。此外,THFA中的两个氧(O)原子充当双溶剂化位点,增强[Zn(H2O)6]2+的去溶剂化动力学,改善Zn2+离子的沉积动力学.因此,即使微量的THFA也能显著抑制不良反应和Zn枝晶的形成,为超长寿命AZIB实现高度可逆的Zn金属阳极。具体来说,含2%THFA的Zn基对称电池在0.5mAcm-2/0.5mAhcm-2下可实现8,800h的超长循环寿命,而含2%THFA的Zn//VO2全电池在5Ag-1下保持了显着的80.03%容量保留率超过2,000次循环。这项研究提出了一种实用的策略来开发无枝晶,成本效益高,和高效的水性储能系统,通过利用具有双位点氢键键合能力的醇醚化合物。
    Aqueous zinc-ion batteries (AZIBs) are highly regarded for their affordability, stability, safety, and eco-friendliness. Nevertheless, their practical application is hindered by severe side reactions and the formation of zinc (Zn) dendrites on the Zn metal anode surface. In this study, we employ tetrahydrofuran alcohol (THFA), an efficient and cost-effective alcohol ether electrolyte, to mitigate these issues and achieve ultralong-life AZIBs. Theoretical calculations and experimental findings demonstrate that THFA acts as both a hydrogen bonding donor and acceptor, effectively anchoring H2O molecules through dual-site hydrogen bonding. This mechanism restricts the activity of free water molecules. Moreover, the two oxygen (O) atoms in THFA serve as dual solvation sites, enhancing the desolvation kinetics of [Zn(H2O)6]2+ and improving the deposition dynamics of Zn2+ ions. As a result, even trace amounts of THFA significantly suppress adverse reactions and the formation of Zn dendrites, enabling highly reversible Zn metal anodes for ultralong-life AZIBs. Specifically, a Zn-based symmetric cell containing 2 % THFA achieves an ultralong cycle life of 8,800 h at 0.5 mA cm-2/0.5 mAh cm-2, while a Zn//VO2 full cell containing 2 % THFA maintains a remarkable 80.03 % capacity retention rate at 5 A g-1 over 2,000 cycles. This study presents a practical strategy to develop dendrite-free, cost-effective, and highly efficient aqueous energy storage systems by leveraging alcohol ether compounds with dual-site hydrogen bonding capabilities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    有机电极材料(OEM)由于其丰富的资源和灵活的可设计性,在水性锌离子电池(AZIBs)中的应用引起了广泛的关注。然而,高性能OEM的发展受到其高溶解度的强烈阻碍,导电性差,缓慢的离子扩散动力学,和难以与Zn2+配位。在这里,灵感来自面料工艺品,我们通过从点到线和平面的构建块的迭代进化设计了一个坚固的聚合物织物。由点到线的演变不仅可以提高结构稳定性和电导率,而且可以调节活性位点的排列,使Zn2的存储成为可能。除了进一步增强上述性能外,从直线到平面的演变也可以促进离子迁移的非干扰通道的构建。因此,聚(1,4,5,8-萘四羧酸二酐/2,3,5,6-四氨基环己-2,5-二烯-1,4-二酮)(PNT)聚合物织物具有最增强的结构稳定性,优化的活动现场布置,改善导电性,和合适的离子通道,在AZIB中,在56.9mgcm-2的高质量负载下,达到创纪录的高容量保留率为96%,在150C(1C=200mAg-1)下,稳定的循环寿命超过20,000次循环。此外,PNT对有机电解质系统中的各种离子具有普遍性,如Li/Na/K离子电池。我们对聚合物织物阴极的迭代设计为先进OEM的开发奠定了基础,以促进金属离子电池的性能。
    Organic electrode materials (OEMs) have attracted significant attention for use in aqueous zinc-ion batteries (AZIBs) because of their abundant resources and flexible designability. However, the development of high-performance OEMs is strongly hindered by their high solubility, poor conductivity, sluggish ion diffusion kinetics, and difficult coordination toward Zn2+. Herein, inspired by fabric crafts, we have designed a robust polymer fabric through the iterative evolution of the building blocks from point to line and plane. The evolution from point to line could not only improve the structural stability and electrical conductivity but also adjust the active site arrangement to enable the storage of Zn2+. In addition to further boosting the aforementioned properties, the evolution from line to plane could also facilitate the construction of noninterference channels for ion migration. Accordingly, the poly(1,4,5,8-naphthalenetetracarboxylic dianhydride/2,3,5,6-tetraaminocyclohexa-2,5-diene-1,4-dione) (PNT) polymer fabric has the most enhanced structural stability, optimized active site arrangement, improved electrical conductivity, and suitable ion channels, resulting in a record-high capacity retention of 96% at a high mass loading of 56.9mg cm-2 and a stable cycle life of more than 20,000 cycles at 150C (1C=200 mA g-1) in AZIBs. In addition, PNT exhibits universality for a wide range of ions in organic electrolyte systems, such as Li/Na/K-ion batteries. Our iterative design of polymer fabric cathode has laid the foundation for the development of advanced OEMs to promote the performance of metal-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    对水性锌离子电池(ZIBs)的重新考虑受到了有吸引力的锌金属的推动,因其高理论容量和成本效益而脱颖而出。尽管如此,由H2O分子的显着反应性和猖ramp的枝晶生长引发的有害副反应显着损害了锌金属阳极的稳定性。在这里,通过利用丙烯酰胺(AM)分子的独特性质来增加成核和寄生反应的驱动力,提出了一种新的方法。结合实验数据和理论模拟,证明了AM添加剂的掺入可以重建Zn2周围的溶剂化壳并减少活性H2O分子的数量,从而有效地减少了H2O分子的分解。因此,含有含AM的ZnSO4电解质的Zn//Zn对称电池在1mAcm-2下可在2000h内获得优异的长期性能,在10mAcm-2下可获得近500h的长期性能。与ZnSO4电解质相比,Zn//VO2全电池在3Ag-1时仍显示出改善的循环性能和227mAhg-1的高初始放电容量。这种电解质优化策略为实现长期ZIB提供了新的见解,并推动了ZIB在储能方面的进展。
    The reconsideration of aqueous zinc-ion batteries (ZIBs) has been motivated by the attractive zinc metal, which stands out for its high theoretical capacity and cost efficiency. Nonetheless, detrimental side reactions triggered by the remarkable reactivity of H2O molecules and rampant dendrite growth significantly compromise the stability of the zinc metal anode. Herein, a novel approach was proposed by leveraging the unique properties of acrylamide (AM) molecules to increase the driving force for nucleation and parasitic reactions. Combined with experimental data and theoretical simulations, it is demonstrated that the incorporation of AM additive can reconstruct the solvation shell around Zn2+ and reduce the number of active H2O molecules, thereby effectively reducing the H2O molecule decomposition. Consequently, the Zn//Zn symmetric batteries with AM-containing ZnSO4 electrolytes can attain excellent long-term performances over 2000 h at 1 mA cm-2 and nearly 500 h at 10 mA cm-2. The Zn//VO2 full batteries still display improved cycling performances and a high initial discharging capacity of 227 mA h g-1 at 3 A g-1 compared to the ZnSO4 electrolyte. This electrolyte optimization strategy offers new insights for achieving long-term ZIBs and advances the progress of ZIBs in energy storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性锌离子电池(AZIB)由于其本质安全性和低成本,有望成为一种有前途的大规模储能系统。然而,AZIB的发展仍然受到先进阴极材料的设计和制造的困扰。在这里,通过集成真空干燥和退火策略,精心设计了无定形五氧化二钒和中空多孔碳球(AVO-HPCS)混合物作为AZIBs阴极材料。无定形五氧化二钒提供了丰富的活性位点和各向同性的离子扩散通道。同时,中空多孔碳球不仅提供了稳定的导电网络,而且还增强了充电/放电过程中的稳定性。因此,AVO-HPCS在0.5A/g下表现出474mAh/g的容量和长期循环稳定性。此外,通过非原位X射线衍射阐明了相应的可逆插入/提取机制,X射线光电子能谱和透射电子显微镜。此外,带AVO-HPCS阴极的柔性袋式电池具有较高的综合性能。因此,这项工作为AZIB先进的非晶阴极材料的开发提供了见解。
    Aqueous zinc-ion batteries (AZIBs) are expected to be a promising large-scale energy storage system owing to their intrinsic safety and low cost. Nevertheless, the development of AZIBs is still plagued by the design and fabrication of advanced cathode materials. Herein, the amorphous vanadium pentoxide and hollow porous carbon spheres (AVO-HPCS) hybrid is elaborately designed as AZIBs cathode material by integrating vacuum drying and annealing strategy. Amorphous vanadium pentoxide provides abundant active sites and isotropic ion diffusion channels. Meanwhile, the hollow porous carbon sphere not only provides a stable conductive network, but also enhances the stability during charging/discharging process. Consequently, the AVO-HPCS exhibits a capacity of 474 mAh/g at 0.5 A/g and long-term cycle stability. Moreover, the corresponding reversible insertion/extraction mechanism is elucidated by ex-situ X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. Furthermore, the flexible pouch battery with AVO-HPCS cathode shows high comprehensive performance. Hence, this work provides insights into the development of advanced amorphous cathode materials for AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由于在高工作电压下令人着迷的额外容量,激活阴离子氧化还原反应(ARR)引起了Li/Na离子电池的极大兴趣。然而,在水性锌离子电池(AZIB)中很少报道ARR,并且尚未探索其在流行的MnO2基阴极中的可能性。在这里,通过低温(140°C)水热法制备了具有中间层“Ca2-支柱”(CaMnO-140)的新型缺锰MnO2微纳米球,其中Mn空位可以通过创建非键合O2p状态来触发ARR,预插层Ca2+可以增强层状结构,并通过形成Ca-O构型来抑制晶格氧的释放。定制的CaMnO-140阴极具有前所未有的高倍率性能(0.1Ag-1时为485.4mAhg-1,10Ag-1时为154.5mAhg-1)和出色的长期循环耐久性(在5000次循环中保持90.6%的容量)。伴随CF3SO3-(来自电解质)吸收/释放的可逆氧氧化还原化学,以及伴随H+/Zn2+共插入/萃取的锰氧化还原,通过先进的同步加速器表征和理论计算来阐明。最后,袋式CaMnO-140//Zn电池具有广阔的应用前景,长寿,宽温度适应性,和高操作安全性。这项研究为通过引发阴离子氧化还原化学来开发AZIB的高能阴极提供了新的视角。
    Activating anionic redox reaction (ARR) has attracted a great interest in Li/Na-ion batteries owing to the fascinating extra-capacity at high operating voltages. However, ARR has rarely been reported in aqueous zinc-ion batteries (AZIBs) and its possibility in the popular MnO2-based cathodes has not been explored. Herein, the novel manganese deficient MnO2 micro-nano spheres with interlayer \"Ca2+-pillars\" (CaMnO-140) are prepared via a low-temperature (140 °C) hydrothermal method, where the Mn vacancies can trigger ARR by creating non-bonding O 2p states, the pre-intercalated Ca2+ can reinforce the layered structure and suppress the lattice oxygen release by forming Ca-O configurations. The tailored CaMnO-140 cathode demonstrates an unprecedentedly high rate capability (485.4 mAh g-1 at 0.1 A g-1 with 154.5 mAh g-1 at 10 A g-1) and a marvelous long-term cycling durability (90.6% capacity retention over 5000 cycles) in AZIBs. The reversible oxygen redox chemistry accompanied by CF3SO3- (from the electrolyte) uptake/release, and the manganese redox accompanied by H+/Zn2+ co-insertion/extraction, are elucidated by advanced synchrotron characterizations and theoretical computations. Finally, pouch-type CaMnO-140//Zn batteries manifest bright application prospects with high energy, long life, wide-temperature adaptability, and high operating safety. This study provides new perspectives for developing high-energy cathodes for AZIBs by initiating anionic redox chemistry.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锌金属阳极遇到重大挑战,包括枝晶生长,析氢,和腐蚀,所有这些都阻碍了含水锌离子电池(AZIBs)的倍率能力和寿命。为了有效解决这些问题,我们将Tween-80作为添加剂引入到传统的ZnSO4电解液中。Tween-80具有电负性氧原子,使其能够吸附到锌(Zn)阳极表面,有利于Zn金属沿(002)取向的定向沉积。Tween-80内的羟基和醚基可以置换Zn2内溶剂化壳中的一些配位水分子。氢键网络的这种破坏调节了Zn2离子的溶剂化结构,并抑制了析氢的可能性。此外,吐温-80中存在的长烃链表现出优异的疏水性能,有助于抵抗Zn阳极被水分子腐蚀和减少氢析出。因此,装有Tween-80添加剂的对称电池可以在1mAcm-2和1mAhcm-2下稳定循环超过4000小时。与V2O5阴极配对时,在2Ag-1的电流密度下,全电池在1000次循环中显示出超过80%的高容量保留率。这项研究强调了利用非离子表面活性剂实现高性能水性锌离子电池的优势。
    Zinc metal anodes encounter significant challenges, including dendrite growth, hydrogen evolution, and corrosion, all of which impede the rate capability and longevity of aqueous zinc-ion batteries (AZIBs). To effectively tackle these issues, we introduced Tween-80 into the traditional ZnSO4 electrolyte as an additive. Tween-80 possesses electronegative oxygen atoms that enable it to adsorb onto the zinc (Zn) anode surface, facilitating the directional deposition of Zn metal along the (002) orientation. The hydroxyl and ether groups within Tween-80 can displace some of the coordinated water molecules in the Zn2+ inner solvation shell. This disruption of the hydrogen bond network regulates the solvation structure of Zn2+ ions and suppresses the possibility of hydrogen evolution. Moreover, the long hydrocarbon chain present in Tween-80 exhibits excellent hydrophobic properties, aiding in the resistance against corrosion of the Zn anode by water molecules and reducing hydrogen evolution. Consequently, a symmetric cell equipped with the Tween-80 additive can cycle stably for over 4000 h at 1 mA cm-2 and 1 mA h cm-2. When paired with the V2O5 cathode, the full cell demonstrates a high-capacity retention rate exceeding 80 % over 1000 cycles at a current density of 2 A g-1. This study underscores the advantages of utilizing non-ionic surfactants for achieving high-performance aqueous zinc-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性锌离子电池(AZIBs)已成为研究热点,但是锌阳极中不可避免的锌枝晶和寄生反应严重阻碍了它们的进一步发展。在这项研究中,三个共价三嗪骨架(DCPY-CTF,CTF-1和FCTF)已合成并用作人工防护涂层,其中氟化三嗪骨架(FCTF)增加了亲锌位点,从而更好地促进树枝状游离锌沉积和抑制析氢反应。令人兴奋的是,实验结果和理论计算均表明,FCTF界面调节了Zn2+沿(002)面的沉积,有效缓解锌枝晶的形成。不出所料,Zn@FCTF对称电池表现出超过4000小时(0.25mAcm-2)的循环稳定性,同时Zn@FCTF//NHVO全电池在1.0A/g时提供280mAh/g的高比容量,优于裸Zn阳极。这项工作为抑制氢析出和促进无枝晶锌沉积以构建高度稳定和可逆的AZIB提供了新的见解。
    Aqueous zinc-ion batteries (AZIBs) have become a research hotspot, but the inevitable zinc dendrites and parasitic reactions in the zinc anode seriously hinder their further development. In this study, three covalent triazine frameworks (DCPY-CTF, CTF-1 and FCTF) have been synthesized and used as artificial protective coatings, in which the fluorinated triazine framework (FCTF) increases the zinc-philic site, thus better promoting dendritic free zinc deposition and inhibiting hydrogen evolution reactions. Excitingly, both experimental results and theoretical calculations indicate that the FCTF interface adjusts the deposition of Zn2+ along the (002) plane, effectively alleviating the formation of zinc dendrites. As expected, Zn@FCTF symmetric cells exhibit cycling stability of over 4000 h (0.25 mA cm-2), meanwhile Zn@FCTF//NHVO full cells provide a high specific capacity of 280 mAh/g at 1.0 A/g, which are superior to those of bare Zn anode. This work provides new insights for suppressing hydrogen evolution and promoting dendrite-free zinc deposition to construct highly stable and reversible AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性锌离子电池(AZIB)由于其强大的安全特性,最近受到了极大的关注,高理论容量,和生态友好,然而,它们的实际应用受到严重的枝晶形成和锌金属阳极在循环过程中的副反应的阻碍。在这里,一种低成本的小分子,烟酰胺(NIC),被提议作为电解质添加剂来有效地调节Zn界面,实现高度可逆和稳定的锌阳极无枝晶。NIC分子不仅修饰了Zn2溶剂化结构,而且比溶剂化H2O优先吸附在Zn表面上,以保护Zn阳极并为Zn2提供许多成核位点以均匀化Zn沉积。因此,添加1wt%的NIC使Zn||Zn对称电池在1mAcm-2时的超长寿命超过9700h,与没有NIC的电池相比,寿命扩大了近808倍。NIC添加剂的优势在NaVO||Zn全电池中得到进一步证明,在1000次循环后表现出90.3%的出色容量保留率,在1A/g时具有99.9%的高库仑效率,而电池仅运行42个周期,没有NIC添加剂。该策略为解决阳极问题提供了一种有前途的方法,促进实用AZIB的进步。
    Aqueous zinc-ion batteries (AZIBs) have recently been paid great attention due to their robust safety features, high theoretical capacity, and eco-friendliness, yet their practical application is hindered by the serious dendrite formation and side reactions of Zn metal anode during cycling. Herein, a low-cost small molecule, nicotinamide (NIC), is proposed as an electrolyte additive to effectively regulate the Zn interface, achieving a highly reversible and stable zinc anode without dendrites. NIC molecules not only modify the Zn2+ solvation structure but also preferentially adsorb on the Zn surface than solvated H2O to protect the Zn anode and provide numerous nucleation sites for Zn2+ to homogenize Zn deposition. Consequently, the addition of 1 wt% NIC enables Zn||Zn symmetric cells an ultra-long lifespan of over 9700 h at 1 mA cm-2, which expands nearly 808 times compared to that without NIC. The advantages of NIC additives are further demonstrated in NaVO||Zn full cells, which exhibit exceptional capacity retention of 90.3 % after 1000 cycles with a high Coulombic efficiency of 99.9 % at 1 A/g, while the cell operates for only 42 cycles without NIC additive. This strategy presents a promising approach to solving the anode problem, fostering advancements in practical AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    含水锌离子电池(AZIBs)由于其高安全性而被认为是大规模储能的有希望的候选者。低成本,和环境友好。作为核心部件,隔膜在AZIB中提供电化学稳定性方面发挥着独特但经常被忽视的作用。这个概念着重于分离器的精致结构-性能关系,突出了这些部件的三种形式及其结构设计要求,即,传统的膜,固态电解质,和电极涂层。讨论了隔膜影响锌阳极和阴极的机理。文章还指出了功能隔膜在高性能AZIB开发中的挑战和潜在的未来方向。
    Aqueous zinc-ion batteries (AZIBs) are considered promising candidates for large-scale energy storage due to their high safety, low cost, and environmental friendliness. As a core component, separator plays a unique yet oftentimes overlooked role in providing electrochemical stability in AZIBs. This concept focuses on the exquisite structure-property relationship of separators, highlighting three forms of these components and their structural design requirements, i.e., traditional membranes, solid-state electrolytes, and electrode coatings. The mechanism by which separators influence the zinc anode and the cathode is discussed. The article also identifies the challenges and potential future directions for functional separators in the development of high-performance AZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    水性锌离子电池(ZIBs)因其较高的比容量而受到越来越多的关注,低成本,和良好的安全性。然而,副反应,析氢反应,以及伴随Zn金属阳极的不受控制的锌枝晶阻碍了ZIB在电网规模储能中的应用。在这里,报道了作为Zn阳极上的界面层的聚(3,4-亚乙基二氧噻吩)(PEDOT)纳米线(Zn-PEDOT)以解决上述问题。我们的实验结果和密度泛函理论模拟表明,PEDOT噻吩环中的Zn2原子和S原子之间的相互作用不仅促进了水合Zn2的去溶剂化,而且可以调节Zn2沿噻吩分子链的扩散,并诱导Zn沿(002)表面的无枝晶沉积。因此,Zn||Cu-PEDOT半电池在1mAcm-2和0.5mAhcm-2的容量下,在2500次循环中表现出高度可逆的电镀/剥离行为,平均库仑效率为99.7%。对称Zn-PEDOT电池可以在1mAcm-2(1mAhcm-2)下稳定运行1100小时,在10mAcm-2(2mAhcm-2)下稳定运行470小时,性能优于对应的裸Zn阳极。此外,Zn-PEDOT||V2O5全电池在1Ag-1时可提供280mAhg-1的比容量,并表现出良好的循环稳定性,其远优于裸Zn||V2O5电池。我们的结果表明,PEDOT纳米线是无枝晶水性ZIB的有前途的界面层之一。
    The aqueous zinc-ion batteries (ZIBs) have gained increasing attention because of their high specific capacity, low cost, and good safety. However, side reactions, hydrogen evolution reaction, and uncontrolled zinc dendrites accompanying the Zn metal anodes have impeded the applications of ZIBs in grid-scale energy storage. Herein, the poly(3,4-ethylenedioxythiophene) (PEDOT) nanowires as an interfacial layer on the Zn anode (Zn-PEDOT) are reported to address the above issues. Our experimental results and density functional theory simulation reveal that the interactions between the Zn2+ and S atoms in thiophene rings of PEDOT not only facilitate the desolvation of hydrated Zn2+ but also can regulate the diffusion of Zn2+ along the thiophene molecular chains and induce the dendrite-free deposition of Zn along the (002) surface. Consequently, the Zn||Cu-PEDOT half-cell exhibits highly reversible plating/stripping behavior with an average Coulombic efficiency of 99.7% over 2500 cycles at 1 mA cm-2 and a capacity of 0.5 mAh cm-2. A symmetric Zn-PEDOT cell can steadily operate over 1100 h at 1 mA cm-2 (1 mAh cm-2) and 470 h at 10 mA cm-2 (2 mAh cm-2), outperforming the counterpart bare Zn anodes. Besides, a Zn-PEDOT||V2O5 full cell could deliver a specific capacity of 280 mAh g-1 at 1 A g-1 and exhibits a decent cycling stability, which are much superior to the bare Zn||V2O5 cell. Our results demonstrate that PEDOT nanowires are one of the promising interfacial layers for dendrite-free aqueous ZIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号