anoxygenic photosynthesis

缺氧光合作用
  • 文章类型: Journal Article
    细菌门的第一个光养成员,双子叶植物AP64T,通过紫色细菌的远距离水平基因转移获得其所有光合作用基因。这里,我们研究了这些获得的基因,在祖先中受到氧气和光的严格控制,被整合到其新主机的监管系统中。G.光生植物在有氧和半有氧条件下生长良好,基因表达几乎没有差异。在有氧条件下,在80µmol光子m-2s-1时,光养G的生长最佳,而较高的光照强度具有抑制作用。转录组显示在最佳光强度下对暗光位移的反应很小,而暴露于更高的光强度(200µmol光子m-2s-1)诱导了基因表达的更强但仍是短暂的变化。有趣的是,在任何测试条件下都没有激活单线态氧防御。我们的结果表明,光养G既不具有从紫色细菌中已知的光合作用基因的氧依赖性抑制,也不具有在需氧缺氧光养生物中描述的光依赖性抑制。相反,G.光养动物已经进化为低光物种,喜欢降低氧气浓度。在这些条件下,细菌可以安全地利用其光异养代谢,而不需要复杂的调节机制。
    目的:水平基因转移是细菌获取新基因的主要机制之一。然而,它只代表了第一步,因为转移的基因也必须在功能上和调节上整合到受体的细胞机制中。双子叶植物,细菌门的成员,通过紫色细菌的远距离水平基因转移获得其光合作用基因。因此,它代表了一个独特的自然实验,其中整个光合作用基因被移植到远处的宿主中。我们表明,光养G.缺乏响应紫色细菌中常见的氧浓度和光强度的光合作用基因表达的调节。这将其生长限制在氧气减少的弱光栖息地。理解水平转移基因的调控不仅对微生物进化很重要,而且对合成生物学和新型生物的工程也很重要。因为这些依赖于外来基因的成功整合。
    The first phototrophic member of the bacterial phylum Gemmatimonadota, Gemmatimonas phototrophica AP64T, received all its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Here, we investigated how these acquired genes, which are tightly controlled by oxygen and light in the ancestor, are integrated into the regulatory system of its new host. G. phototrophica grew well under aerobic and semiaerobic conditions, with almost no difference in gene expression. Under aerobic conditions, the growth of G. phototrophica was optimal at 80 µmol photon m-2 s-1, while higher light intensities had an inhibitory effect. The transcriptome showed only a minimal response to the dark-light shift at optimal light intensity, while the exposure to a higher light intensity (200 µmol photon m-2 s-1) induced already stronger but still transient changes in gene expression. Interestingly, a singlet oxygen defense was not activated under any conditions tested. Our results indicate that G. phototrophica possesses neither the oxygen-dependent repression of photosynthesis genes known from purple bacteria nor the light-dependent repression described in aerobic anoxygenic phototrophs. Instead, G. phototrophica has evolved as a low-light species preferring reduced oxygen concentrations. Under these conditions, the bacterium can safely employ its photoheterotrophic metabolism without the need for complex regulatory mechanisms.
    OBJECTIVE: Horizontal gene transfer is one of the main mechanisms by which bacteria acquire new genes. However, it represents only the first step as the transferred genes have also to be functionally and regulatory integrated into the recipient\'s cellular machinery. Gemmatimonas phototrophica, a member of bacterial phylum Gemmatimonadota, acquired its photosynthesis genes via distant horizontal gene transfer from a purple bacterium. Thus, it represents a unique natural experiment, in which the entire package of photosynthesis genes was transplanted into a distant host. We show that G. phototrophica lacks the regulation of photosynthesis gene expressions in response to oxygen concentration and light intensity that are common in purple bacteria. This restricts its growth to low-light habitats with reduced oxygen. Understanding the regulation of horizontally transferred genes is important not only for microbial evolution but also for synthetic biology and the engineering of novel organisms, as these rely on the successful integration of foreign genes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    蓝细菌,能够进行氧光合作用(OxyP)的唯一原核生物,在地球历史上占据着独特和关键的角色。虽然OxyP可能起源于蓝细菌的观点被广泛接受,它的早期演变仍然难以捉摸。这里,通过使用宏基因组学和超转录组学,我们探索了36个来自温泉生态系统的宏基因组组装基因组(MAG),属于两个深分支蓝藻目:Thermostichales和Gloeomargaritales。功能研究表明,Thermostichales编码关键的类囊体膜生物发生蛋白,Vipp1.根据系统发育结果,我们推断类囊体膜的进化早于Thermostechales与其他蓝藻类群的分歧,并且Thermostechales可能是迄今为止已知的最古老的谱系,从其共同祖先那里继承了这一特征。除了OxyP,通过将硫化物氧化连接到光合电子传递链,这两个谱系都可能具有硫化物驱动的缺氧光合作用(AnoxyP)。出乎意料的是,这种AnoxyP能力似乎是一种获得的特征,因为关键基因sqr是从后来进化的蓝细菌谱系水平转移的。Thermostichales中存在两种D1蛋白变体表明光系统的功能灵活性,确保它们在波动的氧化还原环境中生存。此外,所有MAG都具有流线型的藻胆体,优先捕获更长波长的光,暗示着独特的进化轨迹。总的来说,这些结果揭示了这些早期发散的蓝细菌谱系的光合灵活性,为蓝细菌的早期进化及其光合过程提供了新的思路。
    Cyanobacteriota, the sole prokaryotes capable of oxygenic photosynthesis (OxyP), occupy a unique and pivotal role in Earth\'s history. While the notion that OxyP may have originated from Cyanobacteriota is widely accepted, its early evolution remains elusive. Here, by using both metagenomics and metatranscriptomics, we explore 36 metagenome-assembled genomes from hot spring ecosystems, belonging to two deep-branching cyanobacterial orders: Thermostichales and Gloeomargaritales. Functional investigation reveals that Thermostichales encode the crucial thylakoid membrane biogenesis protein, vesicle-inducing protein in plastids 1 (Vipp1). Based on the phylogenetic results, we infer that the evolution of the thylakoid membrane predates the divergence of Thermostichales from other cyanobacterial groups and that Thermostichales may be the most ancient lineage known to date to have inherited this feature from their common ancestor. Apart from OxyP, both lineages are potentially capable of sulfide-driven AnoxyP by linking sulfide oxidation to the photosynthetic electron transport chain. Unexpectedly, this AnoxyP capacity appears to be an acquired feature, as the key gene sqr was horizontally transferred from later-evolved cyanobacterial lineages. The presence of two D1 protein variants in Thermostichales suggests the functional flexibility of photosystems, ensuring their survival in fluctuating redox environments. Furthermore, all MAGs feature streamlined phycobilisomes with a preference for capturing longer-wavelength light, implying a unique evolutionary trajectory. Collectively, these results reveal the photosynthetic flexibility in these early-diverging cyanobacterial lineages, shedding new light on the early evolution of Cyanobacteriota and their photosynthetic processes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    紫色硫细菌(PSB)能够通过氧化还原的硫化合物进行缺氧光合作用,并被认为是一系列缺氧环境中硫循环的关键驱动因素。在这项研究中,我们表明,使用黄铁矿作为电子和硫源,长春变色菌(一种PSB物种)能够自养生长。比较生长概况,底物表征,和转录组测序数据为细菌利用黄铁矿和自养生长的分子机制提供了有价值的见解。具体来说,黄铁矿支持的细胞培养物(\“py\”\')表现出强劲但缓慢的生长速度和与硫化钠修正的阳性对照不同的模式。在py中观察到编码各种c型和b型细胞色素的基因上调约200倍,“指出这些分子在清除和传递电子从黄铁矿到细胞质代谢中的高度相关性。相反,与LH和RC复杂成分相关的基因的广泛下调表明电子源可能直接控制细菌细胞的光合活性。在硫代谢方面,编码周质或膜结合蛋白的基因(例如,FccAB和SoxYZ)在很大程度上上调,而那些编码细胞质蛋白(例如,Dsr和Apr组)被广泛抑制。其他值得注意的差异表达基因与鞭毛/菌毛/菌毛(+)有关,金属流出(+),ferrienterochelin(-),和[NiFe]氢化酶(+)。生物反应的黄铁矿的表征表明存在聚合硫。这些结果,第一次,把PSB和过渡金属硫化物化学的相互作用放在聚光灯下,具有推进多个领域的潜力,包括金属和硫生物地球化学,细菌胞外电子转移,和人工光合作用。
    目的:固相基质的微生物利用构成了环境微生物学的关键领域,为微生物代谢过程和适应性提供有价值的见解。该领域的最新进展深刻加深了我们对与这些情景相关的微生物生理学的了解,并刺激了生物合成和能源生产方面的创新。此外,对微生物和固相基质之间相互作用的研究直接将微生物活动与周围的矿物学环境联系起来,从而增强我们对相关生物地球化学循环的理解。我们的研究表明,在这一领域向前迈出了重要的一步,第一次,使用不溶性黄铁矿(FeS2)作为电子和硫源的紫色硫细菌的自养生长。呈现的比较增长概况,底物表征,转录组测序数据揭示了电子供体类型之间的关系,光合反应中心活动,以及这些能够进行缺氧光合作用的生物体中潜在的细胞外电子转移。此外,我们的研究结果可能为早期地球生物地球化学演化提供新的见解,为理解塑造我们星球历史的环境条件和微生物过程提供了有价值的约束。
    Purple sulfur bacteria (PSB) are capable of anoxygenic photosynthesis via oxidizing reduced sulfur compounds and are considered key drivers of the sulfur cycle in a range of anoxic environments. In this study, we show that Allochromatium vinosum (a PSB species) is capable of autotrophic growth using pyrite as the electron and sulfur source. Comparative growth profile, substrate characterization, and transcriptomic sequencing data provided valuable insight into the molecular mechanisms underlying the bacterial utilization of pyrite and autotrophic growth. Specifically, the pyrite-supported cell cultures (\"py\"\') demonstrated robust but much slower growth rates and distinct patterns from their sodium sulfide-amended positive controls. Up to ~200-fold upregulation of genes encoding various c- and b-type cytochromes was observed in \"py,\" pointing to the high relevance of these molecules in scavenging and relaying electrons from pyrite to cytoplasmic metabolisms. Conversely, extensive downregulation of genes related to LH and RC complex components indicates that the electron source may have direct control over the bacterial cells\' photosynthetic activity. In terms of sulfur metabolism, genes encoding periplasmic or membrane-bound proteins (e.g., FccAB and SoxYZ) were largely upregulated, whereas those encoding cytoplasmic proteins (e.g., Dsr and Apr groups) are extensively suppressed. Other notable differentially expressed genes are related to flagella/fimbriae/pilin(+), metal efflux(+), ferrienterochelin(-), and [NiFe] hydrogenases(+). Characterization of the biologically reacted pyrite indicates the presence of polymeric sulfur. These results have, for the first time, put the interplay of PSB and transition metal sulfide chemistry under the spotlight, with the potential to advance multiple fields, including metal and sulfur biogeochemistry, bacterial extracellular electron transfer, and artificial photosynthesis.
    OBJECTIVE: Microbial utilization of solid-phase substrates constitutes a critical area of focus in environmental microbiology, offering valuable insights into microbial metabolic processes and adaptability. Recent advancements in this field have profoundly deepened our knowledge of microbial physiology pertinent to these scenarios and spurred innovations in biosynthesis and energy production. Furthermore, research into interactions between microbes and solid-phase substrates has directly linked microbial activities to the surrounding mineralogical environments, thereby enhancing our understanding of the relevant biogeochemical cycles. Our study represents a significant step forward in this field by demonstrating, for the first time, the autotrophic growth of purple sulfur bacteria using insoluble pyrite (FeS2) as both the electron and sulfur source. The presented comparative growth profiles, substrate characterizations, and transcriptomic sequencing data shed light on the relationships between electron donor types, photosynthetic reaction center activities, and potential extracellular electron transfer in these organisms capable of anoxygenic photosynthesis. Furthermore, the findings of our study may provide new insights into early-Earth biogeochemical evolutions, offering valuable constraints for understanding the environmental conditions and microbial processes that shaped our planet\'s history.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Biography
    我们在这里介绍了JanAmesz(1934-2001)在破译植物中氧气光合作用中早期物理化学步骤的细节方面的研究贡献,藻类和蓝细菌,以及紫色的缺氧光合作用,绿色,和日光细菌。他的研究包括光吸收和激发能量转移的机理,初级光化学,和电子转移步骤直到还原吡啶核苷酸。在他的许多发现中,我们强调他1961年的证明,L.N.M.Duysens,含氧光合作用的“系列方案”,通过光I和II对细胞色素f的氧化还原状态的拮抗作用。我们重点介绍了以下有关含氧光合作用的研究:实验直接证明,在Z方案中,质体醌和质体蓝蛋白在各自的位置起作用。此外,Amesz的主要贡献是揭示了缺氧光合细菌中激发能量转移和电子传输步骤的机制(紫色,绿色和日光细菌)。在我们介绍他的研究之前,专注于他的关键发现,我们提供了他个人生活的一瞥。我们以他的三个前博士生(SigiNeerken;HjalmarPernentier,和FrankKleinherenbrink)以及几位科学家(SuleymanAllakhverdiev;RobertBlankenship;RichardCogdell),其中包括两位作者(G.Garab和A.Stirbet)的贡品。
    We present here the research contributions of Jan Amesz (1934-2001) on deciphering the details of the early physico-chemical steps in oxygenic photosynthesis in plants, algae and cyanobacteria, as well as in anoxygenic photosynthesis in purple, green, and heliobacteria. His research included light absorption and the mechanism of excitation energy transfer, primary photochemistry, and electron transfer steps until the reduction of pyridine nucleotides. Among his many discoveries, we emphasize his 1961 proof, with L. N. M. Duysens, of the \"series scheme\" of oxygenic photosynthesis, through antagonistic effects of Light I and II on the redox state of cytochrome f. Further, we highlight the following research on oxygenic photosynthesis: the experimental direct proof that plastoquinone and plastocyanin function at their respective places in the Z-scheme. In addition, Amesz\'s major contributions were in unraveling the mechanism of excitation energy transfer and electron transport steps in anoxygenic photosynthetic bacteria (purple, green and heliobacteria). Before we present his research, focusing on his key discoveries, we provide a glimpse of his personal life. We end this Tribute with reminiscences from three of his former doctoral students (Sigi Neerken; Hjalmar Pernentier, and Frank Kleinherenbrink) and from several scientists (Suleyman Allakhverdiev; Robert Blankenship; Richard Cogdell) including two of the authors (G. Garab and A. Stirbet) of this Tribute.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    单细胞蛋白(SCP)已成为替代蛋白质来源,作为循环经济的一部分,可能基于从废物衍生资源中回收碳和养分。从这些资源中,气态底物具有易于灭菌的优点,允许产生无病原体的SCP。无菌气态底物允许产生无病原体的SCP。这项研究评估了使用富集的光养紫色细菌(PPB)财团使用H2和CO2作为电子和碳源生产SCP的情况。pH值(6.0-8.5)的影响,使用批量测试研究了温度(15-50°C)和光照强度(0-50W·m-2)对生长动力学和生物量产量的影响。在pH7、25°C和光照强度超过30W·m-2的条件下找到了最佳条件。无论环境条件如何,均可实现高生物量和蛋白质产量(〜1gCOD生物质·gCODH2消耗-1和3.9-4.4g蛋白质·gH2-1),是气态流报告的最高值之一。由于PPB联盟使用光作为唯一的能源,因此获得了这些高产率。允许H2的总利用用于增长。氢气吸收速率变化很大,在最佳生长条件下,总H2消耗速率的值高达61±5mgCOD·d-1,最大比吸收率的值高达2.00±0.14gCOD·gCOD-1·d-1。使用能够表示H2上的PPB生长的机械模型估计后一个值。生物质表现出高蛋白质含量(>50%w/w)和足够的氨基酸谱,显示其适合作为饲料的SCP。PPB是实验期间的优势细菌(在大多数测试中相对丰度超过80%),稳定的种群以红细菌为主。和红假单胞菌。这项研究证明了富集的PPB培养物用于H2生物转化为SCP的潜力。
    Single cell protein (SCP) has emerged as an alternative protein source, potentially based on the recovery of carbon and nutrients from waste-derived resources as part of the circular economy. From those resources, gaseous substrates have the advantage of an easy sterilization, allowing the production of pathogen-free SCP. Sterile gaseous substrates allow producing pathogen-free SCP. This study evaluated the use of an enriched phototrophic purple bacteria (PPB) consortium for SCP production using H2 and CO2 as electron and C sources. The influence of pH (6.0-8.5), temperature (15-50 °C) and light intensity (0-50 W·m-2) on the growth kinetics and biomass yields was investigated using batch tests. Optimal conditions were found at pH 7, 25 °C and light intensities over 30 W·m-2. High biomass and protein yields were achieved (~ 1 g CODbiomass·g CODH2consumed-1 and 3.9-4.4 g protein·g H2-1) regardless of the environmental conditions, being amongst the highest values reported from gaseous streams. These high yields were obtained thanks to the use of light as a sole energy source by the PPB consortium, allowing a total utilization of H2 for growth. Hydrogen uptake rates varied considerably, with values up to 61 ± 5 mg COD·d-1 for the overall H2 consumption rates and 2.00 ± 0.14 g COD·g COD-1·d-1 for the maximum specific uptake rates under optimal growth conditions. The latter value was estimated using a mechanistic model able to represent PPB growth on H2. The biomass exhibited high protein contents (>50 % w/w) and adequate amino acid profiles, showing its suitability as SCP for feed. PPB were the dominant bacteria during the experiments (relative abundance over 80 % in most tests), with a stable population dominated by Rhodobacter sp. and Rhodopseudomonas sp. This study demonstrates the potential of enriched PPB cultures for H2 bioconversion into SCP.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    植物光合参数的无损评价方法广泛应用于快速评价光合性能,植物健康,以及环境和栽培条件引起的植物生产力变化。这些方法大多基于叶绿素荧光动力学的测量,特别是在脉冲调制(PAM)荧光法上。在本文中,荧光方法就维管植物和微藻固有的一些可能性和局限性进行了严格的讨论。注意与类囊体循环电子传递和缺氧光合作用的低估有关的潜在错误。考虑到颜色寻址测量,也观察到PAM方法。讨论了光声方法作为荧光法的替代和补充。PAM荧光测定法和光声的新型傅立叶修改被认为是允许同时对一个样品应用双频或多频测量光的工具。
    Non-destructive methods for the assessment of photosynthetic parameters of plants are widely applied to evaluate rapidly the photosynthetic performance, plant health, and shifts in plant productivity induced by environmental and cultivation conditions. Most of these methods are based on measurements of chlorophyll fluorescence kinetics, particularly on pulse modulation (PAM) fluorometry. In this paper, fluorescence methods are critically discussed in regard to some their possibilities and limitations inherent to vascular plants and microalgae. Attention is paid to the potential errors related to the underestimation of thylakoidal cyclic electron transport and anoxygenic photosynthesis. PAM-methods are also observed considering the color-addressed measurements. Photoacoustic methods are discussed as an alternative and supplement to fluorometry. Novel Fourier modifications of PAM-fluorometry and photoacoustics are noted as tools allowing simultaneous application of a dual or multi frequency measuring light for one sample.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    紫色光养细菌使用由围绕反应中心(RC)的光捕获复合物1(LH1)组成的“光系统”,该复合物吸收远红近红外光并将其转化为化学能。Blastochloris物种,收获>1000纳米的光,使用细菌叶绿素b而不是更常见的细菌叶绿素a作为主要的光色素,并将LH1与一个额外的多肽亚基组装在一起,LH1γ,由多个基因编码。要将角色分配给γ,我们删除了绿藻模型中的四个编码基因。有趣的是,在常规用于培养的卤素灯泡下生长,产生的细胞显示出825nm的吸收最大值,仅与RC相似,但是在白光下生长产生的细胞在972nm处具有最大吸收。色素组成和蔗糖梯度分级的HPLC分析表明,白光生长的突变体组装了RC-LH1,尽管最大吸收蓝移了46nm。由于被水吸收,900-1000nm之间的波长在大气中传输不良,因此,我们的结果为掺入γ提供了进化原理;该多肽将RC-LH1的吸收红移到一个光谱范围,在该光谱范围内光子的能量较低,但更丰富。最后,我们用编码天然LH1γ变体的质粒转化突变体,并证明在野生型复合物中发现的多肽将吸收红移回1018nm,但是合并远近相关的变体只会导致中等程度的变化。该结果表明,可以调节RC-LH1的吸收,并且可以允许光合作用超过其当前的低能极限。
    Purple phototrophic bacteria use a \'photosystem\' consisting of light harvesting complex 1 (LH1) surrounding the reaction centre (RC) that absorbs far-red-near-infrared light and converts it to chemical energy. Blastochloris species, which harvest light >1000 nm, use bacteriochlorophyll b rather than the more common bacteriochlorophyll a as their major photopigment, and assemble LH1 with an additional polypeptide subunit, LH1γ, encoded by multiple genes. To assign a role to γ, we deleted the four encoding genes in the model Blastochloris viridis. Interestingly, growth under halogen bulbs routinely used for cultivation yielded cells displaying an absorption maximum of 825 nm, similar to that of the RC only, but growth under white light yielded cells with an absorption maximum at 972 nm. HPLC analysis of pigment composition and sucrose gradient fractionation demonstrate that the white light-grown mutant assembles RC-LH1, albeit with an absorption maximum blue-shifted by 46 nm. Wavelengths between 900-1000 nm transmit poorly through the atmosphere due to absorption by water, so our results provide an evolutionary rationale for incorporation of γ; this polypeptide red-shifts absorption of RC-LH1 to a spectral range in which photons are of lower energy but are more abundant. Finally, we transformed the mutant with plasmids encoding natural LH1γ variants and demonstrate that the polypeptide found in the wild type complex red-shifts absorption back to 1018 nm, but incorporation of a distantly related variant results in only a moderate shift. This result suggests that tuning the absorption of RC-LH1 is possible and may permit photosynthesis past its current low-energy limit.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    光异养细菌使用质子泵吸视紫红质或基于细菌叶绿素(BChl)的光系统收集光能。从高山湖泊Gossenkölllesee分离出的鞘氨醇单胞菌AAP5细菌包含两个系统的基因。这里,我们显示BChl在黑暗中在4°C至22°C之间表达,而xanthorhodopsin仅在低于16°C的温度和存在光的情况下表达。因此,在自然明暗循环下在低温下生长的细胞同时包含基于BChl的光系统和具有夜光素天线的黄质视紫红质。闪光光解测量证明这两种系统都具有光化学活性。捕获的光能用于ATP合成并刺激生长。因此,冰川链球菌AAP5代表氯光营养和视网膜光营养生物。我们的分析表明,在较高的光照和较低的温度下,细胞可能更喜欢简单的黄质,而较大的基于BChl的光系统可能在较低的光强度下表现更好。这表明,使用两个系统进行采光可能代表了对高山湖泊和其他类似生态系统中特定环境条件的进化适应。允许细菌根据辐照度和温度的季节性变化来交替其采光装置。
    Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium Sphingomonas glacialis AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, S. glacialis AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在低氧环境中,进行Fe(II)氧化的微生物在铁的生物地球化学循环中起着重要作用。Fe(II)氧化已在自养的背景下进行了大量研究。这里,我们证明了缺氧的光致营养,沼泽红假单胞菌CGA010在使用氧化碳源的光异养生长过程中进行Fe(II)氧化,苹果酸,导致细胞产量增加,并允许更多的碳被引导到细胞生物质。我们通过转录组测序(RNA-seq)探讨了这一点的调控基础,并发现已知pioABCFe(II)氧化基因的表达水平。RegSR,以及提供给细胞的碳源的氧化态。这提供了混合营养生长的第一个机械证明,涉及减少Fe(II)氧化和碳同化产生的功率。重要性细菌同时使用碳和还原金属如Fe(II)被认为在水生环境中很普遍,对这一过程的机械描述可以提高我们对生物地球化学循环的理解。不产氧的光养细菌,例如沼泽红假单胞菌,通常使用光作为能量和有机化合物作为碳源和电子源。当富含电子的化合物如H2,硫代硫酸盐,和Fe(II)作为电子给体提供。这里,我们表明,当提供氧化的碳化合物苹果酸时,Fe(II)氧化可用于另一种情况下,以促进R.palustris的更高生长产量。我们进一步建立了支撑这一观察的监管机制。
    Microorganisms that carry out Fe(II) oxidation play a major role in biogeochemical cycling of iron in environments with low oxygen. Fe(II) oxidation has been largely studied in the context of autotrophy. Here, we show that the anoxygenic phototroph, Rhodopseudomonas palustris CGA010, carries out Fe(II) oxidation during photoheterotrophic growth with an oxidized carbon source, malate, leading to an increase in cell yield and allowing more carbon to be directed to cell biomass. We probed the regulatory basis for this by transcriptome sequencing (RNA-seq) and found that the expression levels of the known pioABC Fe(II) oxidation genes in R. palustris depended on the redox-sensing two-component system, RegSR, and the oxidation state of the carbon source provided to cells. This provides the first mechanistic demonstration of mixotrophic growth involving reducing power generated from both Fe(II) oxidation and carbon assimilation. IMPORTANCE The simultaneous use of carbon and reduced metals such as Fe(II) by bacteria is thought to be widespread in aquatic environments, and a mechanistic description of this process could improve our understanding of biogeochemical cycles. Anoxygenic phototrophic bacteria like Rhodopseudomonas palustris typically use light for energy and organic compounds as both a carbon and an electron source. They can also use CO2 for carbon by carbon dioxide fixation when electron-rich compounds like H2, thiosulfate, and Fe(II) are provided as electron donors. Here, we show that Fe(II) oxidation can be used in another context to promote higher growth yields of R. palustris when the oxidized carbon compound malate is provided. We further established the regulatory mechanism underpinning this observation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    黄石国家公园(YNP)的碱性温泉为研究光合自养生物与温度之间的关系提供了框架。以前的工作集中在研究蓝细菌(产氧光养菌)如何随温度变化,硫化物,pH值,但是由于这些分类单元的分类学和代谢多样性,有关缺氧光合作用的生态生理学仍存在许多问题。为此,我们检查了与光萎缩有关的基因的分布,碳固定,使用宏基因组测序,在YNP的光合作用温度上限(71ºC)附近的八个碱性(pH7.3-9.4)温泉位点中固氮。基于编码关键反应中心蛋白的基因,地理隔离在选择不同的光养氯氟菌方面比温度发挥更大的作用,虽然通常与缺氧光养生物的自养相关的基因,没有明显的温度分布。此外,我们恢复了与Chloroflexi相关的Calvin周期基因变异,缺氧自养生物的另一种碳固定途径。最后,我们发现了一些与玫瑰弯曲相关的大量固氮基因序列,提供了进一步的证据,表明参与氯氟菌固氮的基因比以前假设的更常见。一起,我们的结果增加了黄石国家公园温泉中光养细菌分布和功能潜力的工作,并支持了非生物和生物因素共同影响温泉中光养细菌分布的假设。从这些数据和其他数据中对分离物和宏基因组组装基因组(MAG)的未来研究将进一步加深我们对温泉缺氧光养菌的生态学和进化的理解。重要性温泉中的光合细菌对微生物进化和生态学都非常重要。虽然大量的工作集中在黄石国家公园的蘑菇和章鱼泉的蓝细菌中的含氧光合作用上,关于温泉缺氧光养生物的代谢潜力和生态学,仍然存在许多问题。缺氧光养生物在代谢和分类学上是多样化的,对它们的生理学的进一步研究将导致对这些分类群的微生物进化和生态学有更深入的了解。这里,我们已经量化了氧和缺氧光养生物中参与碳和氮代谢的关键基因的分布。我们的结果表明,温度>68ºC选择不同的蓝藻群,与这些类群相关的碳固定途径可能受到相同的选择压力。此外,我们的数据表明,如我们的基因变异分析所证明的,光养绿氟虫基因和碳固定基因在很大程度上受当地条件的影响.最后,我们回收了几个与潜在的新型光养氯氟菌相关的基因。一起,我们的结果增加了黄石国家公园温泉的工作,并为未来宏基因组组装基因组的工作奠定了基础。
    Alkaline hot springs in Yellowstone National Park (YNP) provide a framework to study the relationship between photoautotrophs and temperature. Previous work has focused on studying how cyanobacteria (oxygenic phototrophs) vary with temperature, sulfide, and pH, but many questions remain regarding the ecophysiology of anoxygenic photosynthesis due to the taxonomic and metabolic diversity of these taxa. To this end, we examined the distribution of genes involved in phototrophy, carbon fixation, and nitrogen fixation in eight alkaline (pH 7.3-9.4) hot spring sites near the upper temperature limit of photosynthesis (71ºC) in YNP using metagenome sequencing. Based on genes encoding key reaction center proteins, geographic isolation plays a larger role than temperature in selecting for distinct phototrophic Chloroflexi, while genes typically associated with autotrophy in anoxygenic phototrophs, did not have distinct distributions with temperature. Additionally, we recovered Calvin cycle gene variants associated with Chloroflexi, an alternative carbon fixation pathway in anoxygenic photoautotrophs. Lastly, we recovered several abundant nitrogen fixation gene sequences associated with Roseiflexus, providing further evidence that genes involved in nitrogen fixation in Chloroflexi are more common than previously assumed. Together, our results add to the body of work on the distribution and functional potential of phototrophic bacteria in Yellowstone National Park hot springs and support the hypothesis that a combination of abiotic and biotic factors impact the distribution of phototrophic bacteria in hot springs. Future studies of isolates and metagenome assembled genomes (MAGs) from these data and others will further our understanding of the ecology and evolution of hot spring anoxygenic phototrophs. IMPORTANCE Photosynthetic bacteria in hot springs are of great importance to both microbial evolution and ecology. While a large body of work has focused on oxygenic photosynthesis in cyanobacteria in Mushroom and Octopus Springs in Yellowstone National Park, many questions remain regarding the metabolic potential and ecology of hot spring anoxygenic phototrophs. Anoxygenic phototrophs are metabolically and taxonomically diverse, and further investigations into their physiology will lead to a deeper understanding of microbial evolution and ecology of these taxa. Here, we have quantified the distribution of key genes involved in carbon and nitrogen metabolism in both oxygenic and anoxygenic phototrophs. Our results suggest that temperature >68ºC selects for distinct groups of cyanobacteria and that carbon fixation pathways associated with these taxa are likely subject to the same selective pressure. Additionally, our data suggest that phototrophic Chloroflexi genes and carbon fixation genes are largely influenced by local conditions as evidenced by our gene variant analysis. Lastly, we recovered several genes associated with potentially novel phototrophic Chloroflexi. Together, our results add to the body of work on hot springs in Yellowstone National Park and set the stage for future work on metagenome assembled genomes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号