anodes

阳极
  • 文章类型: Journal Article
    引入丰富的金属以形成三元锗基硫属化物可以稀释高价并有效缓冲锗的体积变化。在这里,橄榄石结构的Fe2GeX4(X=S,Se,和Te)通过化学气相传输方法合成,以比较它们的钠储存性能。一系列原位和非原位测量验证了Fe2GeX4的组合插层-转化-合金化反应机理。Fe2GeS4在8Ag-1下进行2660次循环后表现出477.9mAhg-1的高容量,并具有出色的倍率性能。此外,Na3V2(PO4)3//Fe2GeS4全电池在0.5Ag-1时提供375.5mAhg-1的容量,是商业硬碳的三倍以上,具有93.23%的高初始库仑效率。容量贡献和动力学分析表明,合金化反应显着影响了总容量,并且是Fe2GeS4和Fe2GeSe4反应中的速率决定步骤。达到特定循环阈值后,对Fe2GeX4动力学性质的评估主要依赖于充电过程中发生的离子扩散过程。这项工作表明,Fe2GeX4具有超越硬碳的有希望的实际潜力,为三元锗基阳极的发展提供有价值的见解和动力。
    The introduction of abundant metals to form ternary germanium-based chalcogenides can dilute the high price and effectively buffer the volume variation of germanium. Herein, olivine-structured Fe2GeX4 (X = S, Se, and Te) are synthesized by a chemical vapor transport method to compare their sodium storage properties. A series of in situ and ex situ measurements validate a combined intercalation-conversion-alloying reaction mechanism of Fe2GeX4. Fe2GeS4 exhibits a high capacity of 477.9 mA h g-1 after 2660 cycles at 8 A g-1, and excellent rate capability. Furthermore, the Na3V2(PO4)3//Fe2GeS4 full cell delivers a capacity of 375.5 mA h g-1 at 0.5 A g-1, which is more than three times that of commercial hard carbon, with a high initial Coulombic efficiency of 93.23%. Capacity-contribution and kinetic analyses reveal that the alloying reaction significantly contributes to the overall capacity and serves as the rate-determining step within the reaction for both Fe2GeS4 and Fe2GeSe4. Upon reaching a specific cycle threshold, the assessment of the kinetic properties of Fe2GeX4 primarily relies on the ion diffusion process that occurs during charging. This work demonstrates that Fe2GeX4 possesses promising practical potential to outperform hard carbon, offering valuable insights and impetus for the advancement of ternary germanium-based anodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    为了探索新型电极材料,深入阐明初始库仑效率(ICE),动力学,电荷存储机制对钠离子的存储具有很大的挑战。在这里,据报道,一种新型的3D抗钙钛矿碳化物Ni3ZnC0.7@rGO阳极与醚基电解质结合用于快速Na离子存储,表现出比酯基电解质优越的性能。电化学测试和密度泛函理论(DFT)计算表明,具有醚基电解质的Ni3ZnC0.7@rGO阳极可以促进电荷/离子传输并降低Na扩散能垒,从而改善ICE,可逆容量,rate,和自行车性能。横截面形态和深度剖面表面化学表明,在醚基电解质中不仅形成了更薄、更均匀、副作用更小的反应界面层,而且形成了具有高比例无机成分的优异固体电解质界面(SEI)膜。这加速了Na+的传输,是提高ICE等电化学性能的重要原因。同时,电化学和非原位测量揭示了转化,合金化,基于醚电解质的Ni3ZnC0.7@rGO阳极的共插层混合机理。有趣的是,通过与活性炭(AC)阴极配对设计的Na离子电容器(SIC)具有良好的电化学性能。总的来说,这项工作为开发用于快速钠离子储存的先进材料提供了深刻的见解。
    To explore novel electrode materials with in-depth elucidation of initial coulombic efficiency (ICE), kinetics, and charge storage mechanisms is of great challenge for Na-ion storage. Herein, a novel 3D antiperovskite carbide Ni3ZnC0.7@rGO anode coupled with ether-based electrolyte is reported for fast Na-ion storage, exhibiting superior performance than ester-based electrolyte. Electrochemical tests and density functional theory (DFT) calculations show that Ni3ZnC0.7@rGO anode with ether-based electrolyte can promote charge/ion transport and lower Na+ diffusion energy barrier, thereby improving ICE, reversible capacity, rate, and cycling performance. Cross-sectional-morphology and depth profiling surface chemistry demonstrate that not only a thinner and more homogeneous reaction interface layer with less side effects but also a superior solid electrolyte interface (SEI) film with a high proportion of inorganic components are formed in the ether-based electrolyte, which accelerates Na+ transport and is the significant reason for the improvement of ICE and other electrochemical properties. Meanwhile, electrochemical and ex situ measurements have revealed conversion, alloying, and co-intercalation hybrid mechanisms of the Ni3ZnC0.7@rGO anode based on ether electrolyte. Interestingly, the Na-ion capacitors (SICs) designed by pairing with activated carbon (AC) cathode exhibit favorable electrochemical performance. Overall, this work provides deep insights on developing advanced materials for fast Na-ion storage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    钠离子电池(SIB)由于其相对较低的成本,在便携式电动汽车和间歇性可再生能源存储中具有巨大的应用潜力。目前,硬碳(HC)材料由于其优点被认为是商业上可行的用于SIB的阳极材料,包括更大的容量,低成本,低工作电压,和独特的微观结构。在这些材料中,可再生生物质衍生的硬碳阳极通常用于SIB中。然而,关于生物质硬碳从基础研究到工业应用的报道非常罕见。在本文中,我们从以下几个方面重点研究了生物质衍生硬碳材料的研究进展:(1)硬碳中的钠储存机制;(2)硬碳材料的优化设计策略,合成,杂原子掺杂,材料复合,电解质调制,和预氧化;(3)基于前体源的不同生物质衍生硬碳材料的分类,比较它们的属性,并讨论了不同生物质来源对硬碳材料性能的影响;(4)生物质衍生硬碳阳极在SIBs中的实践挑战和策略;(5)概述了当前生物质衍生硬碳阳极的工业化。最后,我们提出了挑战,战略,并对生物质衍生硬碳材料的未来发展进行了展望。
    Sodium-ion batteries (SIBs) have significant potential for applications in portable electric vehicles and intermittent renewable energy storage due to their relatively low cost. Currently, hard carbon (HC) materials are considered commercially viable anode materials for SIBs due to their advantages, including larger capacity, low cost, low operating voltage, and inimitable microstructure. Among these materials, renewable biomass-derived hard carbon anodes are commonly used in SIBs. However, the reports about biomass hard carbon from basic research to industrial applications are very rare. In this paper, we focus on the research progress of biomass-derived hard carbon materials from the following perspectives: (1) sodium storage mechanisms in hard carbon; (2) optimization strategies for hard carbon materials encompassing design, synthesis, heteroatom doping, material compounding, electrolyte modulation, and presodiation; (3) classification of different biomass-derived hard carbon materials based on precursor source, a comparison of their properties, and a discussion on the effects of different biomass sources on hard carbon material properties; (4) challenges and strategies for practical of biomass-derived hard carbon anode in SIBs; and (5) an overview of the current industrialization of biomass-derived hard carbon anodes. Finally, we present the challenges, strategies, and prospects for the future development of biomass-derived hard carbon materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与NH3一起使用的固体氧化物燃料电池(NH3-SOFC)具有成为具有高效率和能量密度的环境友好和低碳排放装置的巨大潜力。阳极/催化剂上发生的化学或电化学过程的缓慢动力学阻碍了该技术的进步。近几十年来,人们一直致力于开发高效耐用的阳极/催化剂。虽然对结构进行了修改,composition,和阳极或催化剂的形态是有效的,对性能改进或降级的机械理解仍未完全理解。阳极表面在不同尺度下的微观特征如何影响与电化学过程相关的活性或耐久性尚不清楚。本文首先对现有的NH3-SOFCs研究进展进行了综述。随后概述了电解质/电极类型和厚度等因素的影响,工作温度,和燃料流量对NH3-SOFC性能的影响。还回顾了具有各种电解质和电池/系统尺寸的电池的降解机理。最后,为低温NH3-SOFC设计高效电极和催化剂的持续挑战,并讨论了SOFC的潜在方向和未来前景。值得注意的是,耐用性,热循环稳定性,降解,和功率密度被确定为增强低温(550°C或更低)NH3-SOFC的关键指标。催化剂景观方面的专业知识,从表面科学和计算材料设计到改进氨分解催化剂和重整器设计,可能是有益的。这篇综述旨在提供关于催化剂和电极如何影响电化学活性和耐久性的最新和公正的概述。提供关键见解,以提高性能和机械理解,以及为发现和设计NH3-SOFC或其他相关领域的电极奠定科学基础。本文受版权保护。保留所有权利。
    Solid oxide fuel cells utilized with NH3 (NH3-SOFCs) have great potential to be environmentally friendly devices with high efficiency and energy density. The advancement of this technology is hindered by the sluggish kinetics of chemical or electrochemical processes occurring on anodes/catalysts. Extensive efforts have been devoted to developing efficient and durable anode/catalysts in recent decades. Although modifications to the structure, composition, and morphology of anodes or catalysts are effective, the mechanistic understandings of performance improvements or degradations remain incompletely understood. This review informatively commences by summarizing existing reports on the progress of NH3-SOFCs. It subsequently outlines the influence of factors on the performance of NH3-SOFCs. The degradation mechanisms of the cells/systems are also reviewed. Lastly, the persistent challenges in designing highly efficient electrodes/catalysts for low-temperature NH3-SOFCs, and future perspectives derived from SOFCs are discussed. Notably, durability, thermal cycling stability, and power density are identified as crucial indicators for enhancing low-temperature (550 °C or below) NH3-SOFCs. This review aims to offer an updated overview of how catalysts/electrodes affect electrochemical activity and durability, offering critical insights for improving performance and mechanistic understanding, as well as establishing the scientific foundation for the design of electrodes for NH3-SOFCs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    太空应用中使用的电池可能会暴露在大的温度波动下。在这些大的温度波动期间,电池电解质可以经历从液体到固体再回到液体的相变。溶剂的性质和盐的类型影响结晶过程。在这里,我们的目标是了解电极受限区域的压力是如何积累的(例如,孔)影响经历冻融动力学的氧化硅石墨阳极的降解过程。我们的结果表明,高孔隙率电极导致电解质结晶的成核位点密度更高。在暴露于极端温度波动的电池中,孔隙处的局部压力积聚导致活性材料损失和循环寿命降低。
    Batteries used in space applications can be exposed to large temperature-swings. During these large temperature-swings, the battery electrolyte can undergo a phase transformation from a liquid to a solid and back to a liquid. The nature of the solvent and the type of salt influence the crystallization processes. Herein, we aim to understand how pressure build-up in confined regions of an electrode (e.g., pores) influences degradation processes in silicon-oxide graphite anodes undergoing freeze-thaw dynamics. Our results show that high porosity electrodes lead to a greater density of nucleation sites for electrolyte crystallization. Local pressure build-up at pores results in active material loss and decreased cycle lifetime in batteries exposed to extreme temperature swings.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    金属硒化物是钠离子电池(SIB)的有希望的阳极候选,因为它们的高理论容量,低成本,和环境友谊。然而,由于其固有的低电导率和循环过程中不可避免的体积变化引起的不良循环稳定性,在高电流密度下的低速率能力阻碍了其实际应用。在这里,我们开发了一种简单的金属-有机骨架(MOFs)衍生的硒化物策略,以合成一系列包封在石墨烯气凝胶(GA)中的异质双金属硒化物作为SIBs的阳极。双金属硒化物/GA复合材料具有独特的结构特征,可以缩短Na/电子的迁移路径,并在循环过程中通过额外的空隙空间适应体积变化。在异质界面处感应的内置电场可以大大降低用于快速电荷转移动力学的活化能,并促进Na/电子的扩散。GA对于适应循环期间的体积变化和改善导电性也是有益的。作为SIB的先进阳极,具有特殊多孔八面体的MoSe2-Cu1.82Se@GA即使在双金属硒化物/GA复合材料中的1000次循环后,也可以在1A/g的高倍率下提供444.8mAh/g的最高容量。
    Metal selenides are promising anode candidates for sodium ion batteries (SIBs) because of their high theoretical capacity, low cost, and environmental friendship. However, the low rate capability at high current density due to its inherent low electrical conductivity and poor cycle stability caused by inevitable volume variations during cycling frustrate its practical applications. Herein, we have developed a simple metallic-organic frameworks (MOFs)-derived selenide strategy to synthesize a series of heterogeneous bimetallic selenides encapsulated within graphene aerogels (GA) as anodes for SIBs. The bimetallic selenides/GA composites have unique structural characteristics that can shorten the migration path for Na+/electrons and accommodate the volume variations via additional void space during cycling. The built-in electric fields induced at the heterointerfaces can greatly reduce the activation energy for rapid charge transfer kinetics and promote the diffusion of Na+/electrons. GA is also beneficial for accommodating the volume variations during cycling and improving conductivity. As an advanced anode for SIBs, the MoSe2-Cu1.82Se@GA with a special porous octahedron can deliver the highest capacity of 444.8 mAh/g at a high rate of 1 A/g even after 1000 cycles among the bimetallic selenides/GA composites.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    亲锂骨架的设计和制造对于构建先进的Li金属阳极非常重要。在这项工作中,据报道,通过种植金属硫化物(例如,Ni3S2)通过简单的超快焦耳加热(UJH)方法在垂直石墨烯(VG)上,这有助于在碳布(CC)支撑的VG基材上均匀分配亲锂位点,并具有牢固的键合。Ni3S2纳米颗粒均匀地锚定在优化的骨架上,如CC/VG@Ni3S2,这确保了高电导率和具有非枝晶的Li金属的均匀沉积。通过系统的电化学表征,与CC/VG@Ni3S2耦合的对称电池在1mAcm-2和1mAhcm-2的情况下,在14mV的超电势下提供1800h(900个循环)的稳定长期循环。同时,设计的CC/VG@Ni3S2-Li||LFP全电池显示出显著的电化学性能,在500次循环后在0.5C下的容量保持率为92.44%,并且具有优异的倍率性能。这种在分层碳基材料上合成金属硫化物的新颖策略为高性能锂金属电池(LMBs)的开发提供了新的思路。
    The design and fabrication of a lithiophilic skeleton are highly important for constructing advanced Li metal anodes. In this work, a new lithiophilic skeleton is reported by planting metal sulfides (e.g., Ni3S2) on vertical graphene (VG) via a facile ultrafast Joule heating (UJH) method, which facilitates the homogeneous distribution of lithiophilic sites on carbon cloth (CC) supported VG substrate with firm bonding. Ni3S2 nanoparticles are homogeneously anchored on the optimized skeleton as CC/VG@Ni3S2, which ensures high conductivity and uniform deposition of Li metal with non-dendrites. By means of systematic electrochemical characterizations, the symmetric cells coupled with CC/VG@Ni3S2 deliver a steady long-term cycle within 14 mV overpotential for 1800 h (900 cycles) at 1 mA cm-2 and 1 mAh cm-2. Meanwhile, the designed CC/VG@Ni3S2-Li||LFP full cell shows notable electrochemical performance with a capacity retention of 92.44% at 0.5 C after 500 cycles and exceptional rate performance. This novel synthesis strategy for metal sulfides on hierarchical carbon-based materials sheds new light on the development of high-performance lithium metal batteries (LMBs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景技术锂离子电池(LIB)由于其高能量密度和延长的寿命而广泛用于电动车辆和便携式电子产品中。然而,当前的商业LIB受到相对低的能量密度的困扰。具有多种成分的高熵材料已成为开发可有效提高LIB整体性能的新型材料的有效战略方法。本文全面回顾了LIB创新高熵材料的合理设计的最新进展,以及高熵电极的特殊锂离子存储机制和高熵电解质的相当大的离子电导率。这篇综述还分析了单个成分对高熵材料的突出影响,相当大的结构稳定性,锂离子快速扩散,和优异的离子导电性。此外,本文综述了合成方法及其对高熵材料形貌和性能的影响。最终,概述了剩余的挑战和未来的研究方向,旨在开发更有效的高熵材料,提高LIB的整体电化学性能。 .
    Lithium-ion batteries (LIBs) has extensively utilized in electric vehicles and portable electronics due to their high energy density and prolonged lifespan. However, the current commercial LIBs are plagued by relatively low energy density. High-entropy materials with multiple components have emerged as an efficient strategic approach for developing novel materials that effectively improve the overall performance of LIBs. This article provides a comprehensive review the recent advancements in rational design of innovative high-entropy materials for LIBs, as well as the exceptional lithium ion storage mechanism for high-entropy electrodes and considerable ionic conductivity for high-entropy electrolytes. This review also analyses the prominent effects of individual components on the high-entropy materials\' exceptional capacity, considerable structural stability, rapid lithium ion diffusion, and excellent ionic conductivity. Furthermore, this review presents the synthesis methods and their influence on the morphology and properties of high-entropy materials. Ultimately, the remaining challenges and future research directions are outlined, aimed at developing more effective high-entropy materials and improving the overall electrochemical performance of LIBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    一个具有成本效益的,采用可扩展的球磨工艺来合成具有立方ZnS结构的InGeSiP3化合物,旨在解决锂离子电池(LIBs)硅基阳极的缓慢反应动力学问题。实验测量和第一性原理计算证实,合成的InGeSiP3表现出明显更高的电子电导率,较大的锂离子扩散系数,并且比其母相InGe(或Si)P2或In(或Ge,或Si)P.这些改进源于其提高的构型熵。多个特征验证了InGeSiP3经历了涉及嵌入的可逆锂存储机制,然后是转化和合金反应,产生1,733mAhg-1的可逆容量,初始库仑效率为90%。此外,基于InGeSiP3的电极具有出色的循环稳定性,保持1,121mAhg-1容量,在2,000mAg-1的1,500次循环后的保留率为87%,并且具有卓越的高速率能力,在10,000mAg-1时实现882mAhg-1。受到高熵的独特特征的启发,我们将我们的合成扩展到高熵GaCu(或Zn)InGeSiP5,CuZnInGeSiP5,GaCuZnInGeSiP6,InGeSiP2S(或Se),和InGeSiPSSe。这种努力克服了不同金属和非金属的不混溶性,为高熵磷化硅的电化学储能应用铺平了道路。本文受版权保护。保留所有权利。
    A cost-effective, scalable ball milling process is employed to synthesize the InGeSiP3 compound with a cubic ZnS structure, aiming to address the sluggish reaction kinetics of Si-based anodes for Lithium-ion batteries. Experimental measurements and first-principles calculations confirm that the synthesized InGeSiP3 exhibits significantly higher electronic conductivity, larger Li-ion diffusivity, and greater tolerance to volume change than its parent phases InGe (or Si)P2 or In (or Ge, or Si)P. These improvements stem from its elevated configurational entropy. Multiple characterizations validate that InGeSiP3 undergoes a reversible Li-storage mechanism that involves intercalation, followed by conversion and alloy reactions, resulting in a reversible capacity of 1733 mA h g-1 with an initial Coulombic efficiency of 90%. Moreover, the InGeSiP3-based electrodes exhibit exceptional cycling stability, retaining an 1121 mA h g-1 capacity with a retention rate of ≈87% after 1500 cycles at 2000 mA g-1 and remarkable high-rate capability, achieving 882 mA h g-1 at 10 000 mA g-1. Inspired by the distinctive characteristic of high entropy, the synthesis is extended to high entropy GaCu (or Zn)InGeSiP5, CuZnInGeSiP5, GaCuZnInGeSiP6, InGeSiP2S (or Se), and InGeSiPSSe. This endeavor overcomes the immiscibility of different metals and non-metals, paving the way for the electrochemical energy storage application of high-entropy silicon-phosphides.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在主阳极材料中设计的无序空位不能很好地保持Na+的均匀吸附,并可能使局部结构应力强烈,导致电极剥离和电池故障。这里,我们首先将铟引入Cu2Se以实现CuInSe2的形成。接下来,采用离子提取策略通过自发形成缺陷对来制造富含有序空位的Cu0.54In1.15Se2。如此有序的缺陷,与无序的相比,可以用作均匀分布在晶体主体中的无数钠离子微泵,以使吸附的Na和电化学过程中产生的体积应力均匀化。此外,计算确实证明了Cu0.54In1.15Se2的体积变化比具有无序空位的体积变化小。多亏了独特有序的空缺结构,当用作SIB的阳极材料时,该材料在1C下表现出428mAhg-1的高度可逆容量,在5,000次循环后在10C下表现出311.7mAhg-1的高速率稳定性。这项工作提出了有序空位对SIB电化学的促进作用,并证明了其相对于无序空位的优越性。有望将其扩展到其他金属离子电池,不限于SIB,以实现高容量和循环稳定性。本文受版权保护。保留所有权利。
    Unordered vacancies engineered in host anode materials cannot well maintain the uniform Na+ adsorbed and possibly render the local structural stress intense, resulting in electrode peeling and battery failure. Here, the indium is first introduced into Cu2Se to achieve the formation of CuInSe2. Next, an ion extraction strategy is employed to fabricate Cu0.54In1.15Se2 enriched with ordered vacancies by spontaneous formation of defect pairs. Such ordered defects, compared with unordered ones, can serve as myriad sodium ion micropumps evenly distributing in crystalline host to homogenize the adsorbed Na+ and the generated volumetric stress during the electrochemistry. Furthermore, Cu0.54In1.15Se2 is indeed proved by the calculations to exhibit smaller volumetric variation than the counterpart with unordered vacancies. Thanks to the distinct ordered vacancy structure, the material exhibits a highly reversible capacity of 428 mAh g-1 at 1 C and a high-rate stability of 311.7 mAh g-1 at 10 C after 5000 cycles when employed as an anode material for Sodium-ion batteries (SIBs). This work presents the promotive effect of ordered vacancies on the electrochemistry of SIBs and demonstrates the superiority to unordered vacancies, which is expected to extend it to other metal-ion batteries, not limited to SIBs to achieve high capacity and cycling stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号