aminoacyl tRNA synthetase

氨酰 tRNA 合成酶
  • 文章类型: Journal Article
    转移RNA(tRNA)是修饰程度最高的细胞RNA,无论是关于在tRNA序列中被修饰的核苷酸的比例,还是关于tRNA修饰化学的非凡多样性。然而,许多不同的tRNA修饰的功能才刚刚开始出现。tRNA具有两个一般的修饰簇。第一个簇位于反密码子茎环内,包括蛋白质翻译所必需的几种修饰。第二组修饰在tRNA肘部内,这些修改的作用不太清楚。总的来说,tRNA肘部修饰通常对细胞生长不是必需的,但尽管如此,一些tRNA肘部修饰在生命的所有领域都是高度保守的。除了形成修改,许多tRNA修饰酶已被证明或假设在折叠tRNA时作为tRNA伴侣发挥重要作用。在这次审查中,我们总结了tRNA修饰酶在整个tRNA分子生命周期中的已知功能,从转录到降解。因此,我们描述了tRNA修饰和折叠tRNA修饰酶如何增强tRNA成熟,tRNA氨基酰化,和tRNA在蛋白质合成过程中的功能,最终影响细胞表型和疾病。
    Transfer RNAs (tRNAs) are the most highly modified cellular RNAs, both with respect to the proportion of nucleotides that are modified within the tRNA sequence and with respect to the extraordinary diversity in tRNA modification chemistry. However, the functions of many different tRNA modifications are only beginning to emerge. tRNAs have two general clusters of modifications. The first cluster is within the anticodon stem-loop including several modifications essential for protein translation. The second cluster of modifications is within the tRNA elbow, and roles for these modifications are less clear. In general, tRNA elbow modifications are typically not essential for cell growth, but nonetheless several tRNA elbow modifications have been highly conserved throughout all domains of life. In addition to forming modifications, many tRNA modifying enzymes have been demonstrated or hypothesized to also play an important role in folding tRNA acting as tRNA chaperones. In this review, we summarize the known functions of tRNA modifying enzymes throughout the lifecycle of a tRNA molecule, from transcription to degradation. Thereby, we describe how tRNA modification and folding by tRNA modifying enzymes enhance tRNA maturation, tRNA aminoacylation, and tRNA function during protein synthesis, ultimately impacting cellular phenotypes and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    RNA分析研究表明,人类基因组的75%被转录为RNA,但只有一小部分被翻译成蛋白质。大多数转录的RNA构成非编码RNA的专门池。人类基因组包含大约506个基因,编码一组51种不同的tRNA,构成一类独特的非编码RNA,这些RNA不仅在蛋白质合成过程中具有作为翻译分子的必需内务功能,但有许多未知的监管功能。关于tRNA的各种非规范功能的有趣发现,tRNA衍生片段(tRFs),tRNA的内含子表观转录组学修饰,以及氨酰-tRNA合成酶(AARSs)和ARS相互作用多功能蛋白(AIMPs),设想一个“外围教条”,在定性信息的背景下控制遗传信息的流动,这些信息来自分子生物学的长寿中心教条,驱动细胞向增殖或分化程序。我们的综述将证实tRNA基因簇的有趣特性,由另一种独特的RNA聚合酶催化的内部启动子的非典型tRNA转录,动态多样化的tRNA表观转录组,AARSs控制翻译保真度的复杂tRNA充电机制,tRNA片段对基因表达的表观遗传调控,以及tRNA和tRNA衍生/相关分子作为功能蛋白质组的定量决定因子的作用,秘密协调肿瘤发生的过程,通过去调节的tRNA组介导癌症相关基因转录本的选择性密码子偏倚翻译。
    RNA profiling studies have revealed that ∼75% of the human genome is transcribed to RNA but only a meagre fraction of it is translated to proteins. Majority of transcribed RNA constitute a specialized pool of non-coding RNAs. Human genome contains approximately 506 genes encoding a set of 51 different tRNAs, constituting a unique class of non-coding RNAs that not only have essential housekeeping functions as translator molecules during protein synthesis, but have numerous uncharted regulatory functions. Intriguing findings regarding a variety of non-canonical functions of tRNAs, tRNA derived fragments (tRFs), esoteric epitranscriptomic modifications of tRNAs, along with aminoacyl-tRNA synthetases (AARSs) and ARS-interacting multifunctional proteins (AIMPs), envision a \'peripheral dogma\' controlling the flow of genetic information in the backdrop of qualitative information wrung out of the long-live central dogma of molecular biology, to drive cells towards either proliferation or differentiation programs. Our review will substantiate intriguing peculiarities of tRNA gene clusters, atypical tRNA-transcription from internal promoters catalysed by another distinct RNA polymerase enzyme, dynamically diverse tRNA epitranscriptome, intricate mechanism of tRNA-charging by AARSs governing translation fidelity, epigenetic regulation of gene expression by tRNA fragments, and the role of tRNAs and tRNA derived/associated molecules as quantitative determinants of the functional proteome, covertly orchestrating the process of tumorigenesis, through a deregulated tRNA-ome mediating selective codon-biased translation of cancer related gene transcripts.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    裂殖酵母对无机磷酸盐的饥饿引起适应性转录组变化,其中mRNAs驱动核糖体生物发生,tRNA生物发生,和翻译在全球下调,而自噬和磷酸盐动员的上调。这里,我们研究了饥饿反应的三个组成部分:上调的自噬;转录因子Pho7(PHO调节子的激活子)的作用;和上调的ecl3的表达,这三个同源基因(ecl1,ecl2,ecl3)在其他营养应激期间共同参与细胞存活。自噬因子Atg1的消融导致磷饥饿裂殖酵母的早期死亡,Pho7的消融也是如此。缺乏磷酸盐的pho7Δ细胞的转录组分析强调了Pho7是参与磷酸盐获取和动员的基因的激活剂,不限于原始的三基因PHO调节子,和其他饥饿诱导的基因(包括ecl3)与磷酸盐动力学无关。磷酸盐饥饿过程中Pho7依赖性基因诱导随着基因启动子区域中Pho7DNA结合元件的存在而追踪。与野生型相比,磷酸盐饥饿的pho7Δ细胞中的核糖体蛋白基因下调较少,这可能会缩短他们的寿命。ecl3Δ突变体在磷酸盐充足的细胞中没有引起基因表达变化,并且对磷酸盐饥饿期间的存活没有影响。相比之下,pan-ecl缺失(ecl123Δ)缩短了慢性磷酸盐饥饿期间的寿命。与野生型或pho7Δ细胞相比,磷酸盐饥饿的ecl123Δ细胞经历了编码氨酰基tRNA合成酶的mRNA的更广泛的下调。总的来说,这些结果增强了我们对裂变酵母磷酸盐稳态和营养剥夺期间生存的理解。
    Starvation of Schizosaccharomyces pombe for inorganic phosphate elicits adaptive transcriptome changes in which mRNAs driving ribosome biogenesis, tRNA biogenesis, and translation are globally downregulated, while those for autophagy and phosphate mobilization are upregulated. Here, we interrogated three components of the starvation response: upregulated autophagy; the role of transcription factor Pho7 (an activator of the PHO regulon); and upregulated expression of ecl3, one of three paralogous genes (ecl1, ecl2, and ecl3) collectively implicated in cell survival during other nutrient stresses. Ablation of autophagy factor Atg1 resulted in early demise of phosphate-starved fission yeast, as did ablation of Pho7. Transcriptome profiling of phosphate-starved pho7Δ cells highlighted Pho7 as an activator of genes involved in phosphate acquisition and mobilization, not limited to the original three-gene PHO regulon, and additional starvation-induced genes (including ecl3) not connected to phosphate dynamics. Pho7-dependent gene induction during phosphate starvation tracked with the presence of Pho7 DNA-binding elements in the gene promoter regions. Fewer ribosome protein genes were downregulated in phosphate-starved pho7Δ cells versus WT, which might contribute to their shortened lifespan. An ecl3Δ mutant elicited no gene expression changes in phosphate-replete cells and had no impact on survival during phosphate starvation. By contrast, pan-ecl deletion (ecl123Δ) curtailed lifespan during chronic phosphate starvation. Phosphate-starved ecl123Δ cells experienced a more widespread downregulation of mRNAs encoding aminoacyl tRNA synthetases vis-à-vis WT or pho7Δ cells. Collectively, these results enhance our understanding of fission yeast phosphate homeostasis and survival during nutrient deprivation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    氨酰tRNA合成酶(AaRSs)是有价值的“内务”酶,可确保遗传信息在活细胞中的准确传递,它们用同源氨基酸将tRNA分子氨基酰化,并为蛋白质生物合成提供底物。除了它们的翻译或规范功能,它们有助于非平移/月光照明功能,它们是由蛋白质上其他结构域的存在介导的。这得到了一些报道的支持,这些报道声称AaRS在基因转录中具有重要作用,凋亡,翻译,和RNA剪接调控。AaRS的非规范/非翻译功能还包括它们在调节血管生成中的作用,炎症,癌症,和其他主要的生理病理过程。多个AaRS还与广泛的生理和病理过程相关;一些甚至充当细胞因子。因此,AaRSs的多功能特性也提示其作为可行治疗靶点的潜力。这里,我们的讨论将涵盖一系列归因于氨基酰基-tRNA合成酶(AaRSs)的非规范功能,突出它们与各种人类疾病的联系。
    Aminoacyl-tRNA synthetases (AaRSs) are valuable \"housekeeping\" enzymes that ensure the accurate transmission of genetic information in living cells, where they aminoacylated tRNA molecules with their cognate amino acid and provide substrates for protein biosynthesis. In addition to their translational or canonical function, they contribute to nontranslational/moonlighting functions, which are mediated by the presence of other domains on the proteins. This was supported by several reports which claim that AaRS has a significant role in gene transcription, apoptosis, translation, and RNA splicing regulation. Noncanonical/ nontranslational functions of AaRSs also include their roles in regulating angiogenesis, inflammation, cancer, and other major physio-pathological processes. Multiple AaRSs are also associated with a broad range of physiological and pathological processes; a few even serve as cytokines. Therefore, the multifunctional nature of AaRSs suggests their potential as viable therapeutic targets as well. Here, our discussion will encompass a range of noncanonical functions attributed to Aminoacyl-tRNA Synthetases (AaRSs), highlighting their links with a diverse array of human diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    由结核分枝杆菌(M.tb)在全球范围内杀死了数百万人。抗生素抗性导致当前疗法的无效。参与蛋白质合成的氨酰tRNA合成酶(aaRS)类蛋白质是开发新疗法的有希望的细菌靶标。这里,我们对M.tb和人的aaRS序列进行了系统的比较研究。我们列出了重要的M.tbaaRS,可以将其作为潜在的M.tb靶标进行探索,并以载脂蛋白和底物结合形式进行了甲硫氨酰tRNA合成酶(MetRS)的详细构象空间分析,这是拟议的目标之一。理解构象动力学是对MetRS的机械理解的核心,因为底物结合导致构象变化,导致反应进行。我们在apo和底物结合状态下对M.tbMetRS进行了最完整的模拟研究,时间为6微秒(2个系统×3运行×1微秒)。有趣的是,我们观察到了微分特征,显示出相对较大的动态模拟,而apo结构变得稍微紧凑,溶剂暴露面积减少。相比之下,完整结构中的配体尺寸显着减小,可能会放松配体构象。我们的发现与实验研究相关,从而验证我们的协议。底物的腺苷一磷酸部分表现出比甲硫氨酸高得多的波动。发现His21和Lys54是与配体形成突出的氢键和盐桥相互作用的重要残基。配体-蛋白质亲和力在模拟期间下降,如通过MMGBSA分析计算的,在过去的500ns轨迹中,这表明配体结合时的构象变化。这些差异特征可以进一步探索用于设计新的M.tb抑制剂。
    Tuberculosis caused by Mycobacterium tuberculosis (M.tb) has killed millions worldwide. Antibiotic resistance leads to the ineffectiveness of the current therapies. Aminoacyl tRNA synthetase (aaRS) class of proteins involved in protein synthesis are promising bacterial targets for developing new therapies. Here, we carried out a systematic comparative study on the aaRS sequences from M.tb and human. We listed important M.tb aaRS that could be explored as potential M.tb targets alongside the detailed conformational space analysis of methionyl-tRNA synthetase (MetRS) in apo- and substrate-bound form, which is among the proposed targets. Understanding the conformational dynamics is central to the mechanistic understanding of MetRS, as the substrate binding leads to the conformational changes causing the reaction to proceed. We performed the most complete simulation study of M.tb MetRS for 6 microseconds (2 systems × 3 runs × 1 microsecond) in the apo and substrate-bound states. Interestingly, we observed differential features, showing comparatively large dynamics for the holo simulations, whereas the apo structures became slightly compact with reduced solvent exposed area. In contrast, the ligand size decreased significantly in holo structures possibly to relax ligand conformation. Our findings correlate with experimental studies, thus validating our protocol. Adenosine monophosphate moiety of the substrate exhibited quite higher fluctuations than the methionine. His21 and Lys54 were found to be the important residues forming prominent hydrogen bond and salt-bridge interactions with the ligand. The ligand-protein affinity decreased during simulations as computed by MMGBSA analysis over the last 500 ns trajectories, which indicates the conformational changes upon ligand binding. These differential features could be further explored for designing new M.tb inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    转移RNA(tRNA)将信使RNA密码子解码为核糖体处的肽。核基因组包含每个氨基酸甚至每个反密码子的许多tRNA基因。最近的证据表明,这些tRNA在神经元中的表达是受调节的,它们在功能上不是多余的。当特定的tRNA基因没有功能时,这导致密码子需求和tRNA可用性之间的不平衡。此外,tRNA被剪接,已处理,和转录后修饰。这些过程中的缺陷导致神经系统疾病。最后,氨酰tRNA合成酶(aaRSs)中的突变也会导致疾病。一些aaRS中的隐性突变会导致综合征,而在aaRSs的一个子集的显性突变导致周围神经病变,同样是由于tRNA供应和密码子需求之间的不平衡。很明显,破坏tRNA生物学通常会导致神经系统疾病,需要更多的研究来了解神经元对这些变化的敏感性。细胞与发育生物学年度评论的预期最终在线出版日期,第39卷是2023年10月。请参阅http://www。annualreviews.org/page/journal/pubdates的订正估计数。
    Transfer RNAs (tRNAs) decode messenger RNA codons to peptides at the ribosome. The nuclear genome contains many tRNA genes for each amino acid and even each anticodon. Recent evidence indicates that expression of these tRNAs in neurons is regulated, and they are not functionally redundant. When specific tRNA genes are nonfunctional, this results in an imbalance between codon demand and tRNA availability. Furthermore, tRNAs are spliced, processed, and posttranscriptionally modified. Defects in these processes lead to neurological disorders. Finally, mutations in the aminoacyl tRNA synthetases (aaRSs) also lead to disease. Recessive mutations in several aaRSs cause syndromic disorders, while dominant mutations in a subset of aaRSs lead to peripheral neuropathy, again due to an imbalance between tRNA supply and codon demand. While it is clear that disrupting tRNA biology often leads to neurological disease, additional research is needed to understand the sensitivity of neurons to these changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    甘氨酰-tRNA合成酶(GlyRS)根据生物体具有不同的寡聚结构。虽然在古细菌中存在二聚体α2GlyRS物种,真核生物,还有一些真细菌,在大多数真细菌中发现了异四聚体α2β2GlyRS物种。这里,我们提出了异四聚体α2β2GlyRS的晶体结构,由全长α-和β-亚基组成,来自植物乳杆菌(LpGlyRS),革兰氏阳性乳酸菌。α2β2LpGlyRS采用与最近报道的大肠杆菌α2β2GlyRS相同的X形结构。LpGlyRS上的tRNA对接模型表明LpGlyRS的α-和β-亚基一起识别L形tRNA结构。LpGlyRS的α-和β-亚基与tRNAGly的3'-末端和受体区相互作用,β-亚基的C-末端结构域与tRNAGly的反密码子区相互作用。使用tRNA变体的生化分析表明,除了先前定义的决定子G1C72和C2G71碱基对之外,真细菌tRNAGly中的C35,C36和U73,在tRNAGly中4位和69位的碱基的鉴定是通过LpGlyRS进行有效的糖基化所必需的。在这种情况下,优选tRNAGly中4位的嘌呤碱基和69位的嘧啶碱基的组合。
    Glycyl-tRNA synthetases (GlyRSs) have different oligomeric structures depending on the organisms. While a dimeric α2 GlyRS species is present in archaea, eukaryotes and some eubacteria, a heterotetrameric α2β2 GlyRS species is found in most eubacteria. Here, we present the crystal structure of heterotetrameric α2β2 GlyRS, consisting of the full-length α and β subunits, from Lactobacillus plantarum (LpGlyRS), gram-positive lactic bacteria. The α2β2LpGlyRS adopts the same X-shaped structure as the recently reported Escherichia coli α2β2 GlyRS. A tRNA docking model onto LpGlyRS suggests that the α and β subunits of LpGlyRS together recognize the L-shaped tRNA structure. The α and β subunits of LpGlyRS together interact with the 3\'-end and the acceptor region of tRNAGly, and the C-terminal domain of the β subunit interacts with the anticodon region of tRNAGly. The biochemical analysis using tRNA variants showed that in addition to the previously defined determinants G1C72 and C2G71 base pairs, C35, C36 and U73 in eubacterial tRNAGly, the identification of bases at positions 4 and 69 in tRNAGly is required for efficient glycylation by LpGlyRS. In this case, the combination of a purine base at Position 4 and a pyrimidine base at Position 69 in tRNAGly is preferred.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    了解抗生素及其在病原体细胞中的结合位点之间的相互作用是抗生素设计的关键-与昂贵且耗时的随机试错方法相比,这是一种重要的节省成本的方法。抗生素抗性的迅速发展为此类研究提供了动力。近年来,已经见证了使用组合计算技术的开始,包括计算机模拟和量子力学计算,了解抗生素如何在病原体的氨酰tRNA合成酶(aaRSs)的活性位点结合。这样的计算协议有助于以aaRS为目标的抗生素的基于知识的设计,这是他们验证的目标。在讨论了协议及其战略规划背后的想法之后,对协议及其主要结果进行了描述。接下来是来自不同基本协议的结果的整合。©2023威利期刊有限责任公司。基本方案1:从合成酶和转移RNA的一级序列分析活性位点残基基本方案2:基于分子动力学模拟的方案,用于研究aaRS活性位点的结构和动力学:抗生素复合物基本方案3:基于量子力学方法的方案研究aaRS活性位点的结构和动力学:抗生素复合物。
    Developing an understanding of the interactions between an antibiotic and its binding site in a pathogen cell is the key to antibiotic design-an important cost-saving methodology compared to the costly and time-consuming random trial-and-error approach. The rapid development of antibiotic resistance provides an impetus for such studies. Recent years have witnessed the beginning of the use of combined computational techniques, including computer simulations and quantum mechanical computations, to understand how antibiotics bind at the active site of aminoacyl tRNA synthetases (aaRSs) from pathogens. Such computational protocols assist the knowledge-based design of antibiotics targeting aaRSs, which are their validated targets. After the ideas behind the protocols and their strategic planning are discussed, the protocols are described along with their major outcomes. This is followed by an integration of results from the different basic protocols. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Analysis of active-site residues from primary sequence of synthetase and transfer RNAs Basic Protocol 2: Molecular dynamics simulation-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex Basic Protocol 3: Quantum mechanical method-based protocol to study the structure and dynamics of the aaRS active site:antibiotic complex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    氨酰tRNA合成酶(aaRS)是一个经过充分研究的酶家族,在tRNA中具有特定氨基酸的典型作用。这些蛋白质似乎也具有非规范作用,包括mRNA表达的转录后调控。发现许多aaRS结合mRNA并调节它们翻译成蛋白质。然而,mRNA靶标,相互作用机制,这种约束的监管后果还没有完全解决。这里,我们专注于酵母胞浆苏氨酸tRNA合成酶(ThrRS),以破译其对mRNA结合的影响。ThrRS及其相关mRNA的亲和纯化,然后进行转录组分析,揭示了对编码RNA聚合酶亚基的mRNA的偏好。与所有其他mRNA相比显著结合的mRNA是编码RPC10的mRNA,RPC10是RNA聚合酶III的小亚基。结构建模表明,该mRNA包括类似于ThrRS同源tRNA(tRNAThr)的反密码子茎环(ASL)结构的茎环元件。我们在该元件中引入了随机突变,发现几乎所有与正常序列的变化都会导致ThrRS的结合减少。此外,消除预测的ASL样结构的6个关键位置的点突变显示出ThrRS结合的显着降低,RPC10蛋白水平降低。同时,在突变菌株中tRNAThr水平降低。这些数据表明了一种新的调节机制,其中通过RNA聚合酶III亚基内的模拟元件以涉及tRNA同源aaRS的方式调节细胞tRNA水平。
    Aminoacyl tRNA synthetases (aaRSs) are a well-studied family of enzymes with a canonical role in charging tRNAs with a specific amino acid. These proteins appear to also have non-canonical roles, including post-transcriptional regulation of mRNA expression. Many aaRSs were found to bind mRNAs and regulate their translation into proteins. However, the mRNA targets, mechanism of interaction, and regulatory consequences of this binding are not fully resolved. Here, we focused on yeast cytosolic threonine tRNA synthetase (ThrRS) to decipher its impact on mRNA binding. Affinity purification of ThrRS with its associated mRNAs followed by transcriptome analysis revealed a preference for mRNAs encoding RNA polymerase subunits. An mRNA that was significantly bound compared to all others was the mRNA encoding RPC10, a small subunit of RNA polymerase III. Structural modeling suggested that this mRNA includes a stem-loop element that is similar to the anti-codon stem loop (ASL) structure of ThrRS cognate tRNA (tRNAThr). We introduced random mutations within this element and found that almost every change from the normal sequence leads to reduced binding by ThrRS. Furthermore, point mutations at six key positions that abolish the predicted ASL-like structure showed a significant decrease in ThrRS binding with a decrease in RPC10 protein levels. Concomitantly, tRNAThr levels were reduced in the mutated strain. These data suggest a novel regulatory mechanism in which cellular tRNA levels are regulated through a mimicking element within an RNA polymerase III subunit in a manner that involves the tRNA cognate aaRS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    线粒体疾病(MD)可能是由影响核或线粒体基因的突变引起的。编码线粒体蛋白,或非蛋白质编码线粒体RNA。尽管受影响的基因有很大的变异性,在最严重的情况下,观察到神经肌肉和神经退行性表型,并且没有特定的治疗方法可以从疾病中完全康复。最常用的治疗方法是对症治疗,并基于抗氧化剂鸡尾酒与抗癫痫/抗精神病药物的联合使用以及多器官受累的支持疗法。然而,抗氧化剂鸡尾酒疗法对患有MD的患者的真正效用仍需要科学证明。不幸的是,使用α-生育酚的抗氧化疗法的临床试验,抗坏血酸,谷胱甘肽,核黄素,烟酸,乙酰肉碱和辅酶Q取得了有限的成功。的确,预计使用的抗氧化剂只有在能够针对特定机制的情况下才能有效,即,涉及中枢和周围神经系统,负责疾病的临床表现。值得注意的是,通常,表征MD患者的表型与功能不依赖于特定辅因子的蛋白质突变有关。相反,抗氧化剂混合物的施用可能决定内源性氧化剂的抑制,导致对患者的细胞活力和/或毒性的有害影响。为了避免毒性作用,在施用抗氧化剂治疗之前,确定MD患者的血清抗氧化剂和辅因子水平可能很有用.检查影响蛋白质的突变的定位也是值得的,这些蛋白质的功能应该(更直接或更直接)依赖于待施用的辅因子。用于估计实际需求并预测拟议的基于辅因子/抗氧化剂的治疗的成功。
    Mitochondrial diseases (MDs) may result from mutations affecting nuclear or mitochondrial genes, encoding mitochondrial proteins, or non-protein-coding mitochondrial RNA. Despite the great variability of affected genes, in the most severe cases, a neuromuscular and neurodegenerative phenotype is observed, and no specific therapy exists for a complete recovery from the disease. The most used treatments are symptomatic and based on the administration of antioxidant cocktails combined with antiepileptic/antipsychotic drugs and supportive therapy for multiorgan involvement. Nevertheless, the real utility of antioxidant cocktail treatments for patients affected by MDs still needs to be scientifically demonstrated. Unfortunately, clinical trials for antioxidant therapies using α-tocopherol, ascorbate, glutathione, riboflavin, niacin, acetyl-carnitine and coenzyme Q have met a limited success. Indeed, it would be expected that the employed antioxidants can only be effective if they are able to target the specific mechanism, i.e., involving the central and peripheral nervous system, responsible for the clinical manifestations of the disease. Noteworthily, very often the phenotypes characterizing MD patients are associated with mutations in proteins whose function does not depend on specific cofactors. Conversely, the administration of the antioxidant cocktails might determine the suppression of endogenous oxidants resulting in deleterious effects on cell viability and/or toxicity for patients. In order to avoid toxicity effects and before administering the antioxidant therapy, it might be useful to ascertain the blood serum levels of antioxidants and cofactors to be administered in MD patients. It would be also worthwhile to check the localization of mutations affecting proteins whose function should depend (less or more directly) on the cofactors to be administered, for estimating the real need and predicting the success of the proposed cofactor/antioxidant-based therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号