all‐solid‐state battery

  • 文章类型: Journal Article
    基于硫化物的全固态电池(SB)的阴极表面通常涂有无定形LiNbO3,以稳定充放电反应。然而,高压充电削弱了优势,这是由非晶LiNbO3涂层的问题引起的。这项研究直接研究了在SBs的高压充电过程中非晶LiNbO3涂层的降解。使用电化学气体分析和电化学X射线光电子能谱观察到通过从无定形LiNbO3涂层中提取Li而产生的O2。该O2导致在涂层周围形成氧化固体电解质(SE)并降低电池性能。另一方面,元素取代(即,无定形-LiNbxP1-xO3)减少O2释放,导致SB稳定的高压充放电反应。结果强调,抑制O2的产生是提高SB能量密度的关键因素。
    The cathode surface of sulfide-based all-solid-state batteries (SBs) is commonly coated with amorphous-LiNbO3 in order to stabilize charge-discharge reactions. However, high-voltage charging diminishes the advantages, which is caused by problems with the amorphous-LiNbO3 coating layer. This study has investigated the degradation of amorphous-LiNbO3 coating layer directly during the high-voltage charging of SBs. O2 generation via Li extraction from the amorphous-LiNbO3 coating layer is observed using electrochemical gas analysis and electrochemical X-ray photoelectron spectroscopy. This O2 leads to the formation of an oxidative solid electrolyte (SE) around the coating layer and degrades the battery performance. On the other hand, elemental substitution (i.e., amorphous-LiNbxP1- xO3) reduces O2 release, leading to stable high-voltage charge-discharge reactions of SBs. The results have emphasized that the suppression of O2 generation is a key factor in improving the energy density of SBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    用不易燃固体电解质(SE)代替锂电池中的易燃有机液体电解质对于提高各种应用的安全性至关重要。包括便携式电子产品,电动汽车,和可扩展的能源存储。由于典型的阴极材料不具有超离子导电性,阴极中的锂离子传导主要依赖于引入大量SE作为添加剂以形成复合阴极。这大大损害了固态锂电池的能量密度。这里,我们演示了卤化物SE,Li3VCl6不仅表现出良好的Li+导电性,但更重要的是,提供约80mAhg-1的高度可逆容量,与Li+/Li相比,平均电压为3V。Li3VCl6的离子电导率在电化学锂化/脱锂时经历了边际波动,因为其典型的固溶体反应仅导致锂空位的减少。当与传统的LiFePO4阴极结合时,活性Li3VCl6阴极电解液可实现令人印象深刻的217.1mAhg-1LFP容量,与非活性阴极电解液相比,能量密度增加约50%。利用可用作活性材料的阴极电解液的整体质量提供了提高额外容量的机会,使其在应用中可行。本文受版权保护。保留所有权利。
    Replacing flammable organic liquid electrolytes with nonflammable solid electrolytes (SEs) in lithium batteries is crucial for enhancing safety across various applications, including portable electronics, electric vehicles, and scalable energy storage. Since typical cathode materials do not possess superionic conductivity, Li-ion conduction in the cathode predominantly relies on incorporating a significant number of SEs as additives to form a composite cathode, which substantially compromises the energy density of solid-state lithium batteries. Here, a halide SE, Li3VCl6 is demonstrated, which not only exhibits a decent Li+ conductivity, but more importantly, delivers a highly reversible capacity of approximately 80 mAh g-1 with an average voltage of 3 V versus Li+/Li. The ionic conductivity of Li3VCl6 experiences marginal fluctuations upon electrochemical lithiation/delithiation, as its prototypical solid-solution reaction results solely in a reduction of lithium vacancy. When combined with the traditional LiFePO4 cathode, the active Li3VCl6 catholyte enables an impressive capacity of 217.1 mAh g-1 LFP and about 50% increase in energy density compared with inactive catholytes. Harnessing the integrated mass of the catholyte-which can serve as an active material-presents an opportunity to boost the extra capacity, rendering it feasible in applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    锂(Li)金属电极的保护是全固态Li金属电池(ASSLMB)的核心挑战。具有不同结构的碳材料在液体电解质中显示出巨大的Li保护效果,然而,可以加速固态电解质(SE)的分解,由于高电导率,严重限制了它们在ASSLMB中的应用。这里,提出了一种新颖的策略来定制碳材料,以实现ASSLMB中的有效Li保护,通过在碳材料上原位形成合理的铌基富含锂的无序岩盐(DRS)壳,为加速碳锂化提供有利的渗透Li+扩散网络,并且能够同时提高碳结构在深锂化状态下的亲油性和降低的电子电导率。利用拟议的战略,不同的碳材料,如石墨碳纸和碳纳米管,具有极大的加速界面动力学的能力,使Li电镀/剥离过程均匀化,并抑制SE分解,在接近实际应用的各种条件下,能够大大提高ASSLMB的性能。预计该策略将为开发可靠的高能量密度ASSLMB创建新的Li保护路线图。本文受版权保护。保留所有权利。
    Protection of lithium (Li) metal electrode is a core challenge for all-solid-state Li metal batteries (ASSLMBs). Carbon materials with variant structures have shown great effect of Li protection in liquid electrolytes, however, can accelerate the solid-state electrolyte (SE) decomposition owing to the high electronic conductivity, seriously limiting their application in ASSLMBs. Here, a novel strategy is proposed to tailor the carbon materials for efficient Li protection in ASSLMBs, by in situ forming a rational niobium-based Li-rich disordered rock salt (DRS) shell on the carbon materials, providing a favorable percolating Li+ diffusion network for speeding the carbon lithiation, and enabling simultaneously improved lithiophilicity and reduced electronic conductivity of the carbon structure at deep lithiation state. Using the proposed strategy, different carbon materials, such as graphitic carbon paper and carbon nanotubes, are tailored with great ability to speed the interfacial kinetics, homogenize the Li plating/stripping processes, and suppress the SE decompositions, enabling much improved performances of ASSLMBs under various conditions approaching the practical application. This strategy is expected to create a novel roadmap of Li protection for developing reliable high-energy-density ASSLMBs.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    基于无机固体电解质的全固态电池(ASSB)在克服现有锂离子电池的低劣能量密度和安全问题方面吸引了大量研究人员。迄今为止,ASSB中的阴极设计取得了显著成就,增加了将电池系统扩大到应用市场的无机固态软包电池配置的紧迫性。在这里,回顾了阴极材料的最新发展及其在袋装电池形式中应用的设计考虑,以理顺ASSB的路线图。具体来说,插层化合物和具有转化化学的转化材料被强调和讨论为两种潜在有价值的材料类型。这篇综述集中在基本的电化学机理,机械接触问题,和片状结构在无机固态袋装电池中具有相应的观点,从而指导今后的研究方向。最后,本综述提供了制造无机固态袋装电池以满足实际高能量密度目标的基准,以开发商业上可行的产品。
    All-solid-state batteries (ASSBs) based on inorganic solid electrolytes fascinate a large body of researchers in terms of overcoming the inferior energy density and safety issues of existing lithium-ion batteries. To date, the cathode designs in the ASSBs achieve remarkable achievements, adding the urgency of scaling up the battery system toward inorganic solid-state pouch cell configuration for the application market. Herein, the recent developments of cathode materials and the design considerations for their application in the pouch cell format are reviewed to straighten out the roadmap of ASSBs. Specifically, the intercalation compounds and the conversion materials with conversion chemistries are highlighted and discussed as two potentially valuable material types. This review focuses on the basic electrochemical mechanisms, mechanical contact issues, and sheet-type structure in inorganic solid-state pouch cells with corresponding perspectives, thus guiding the future research direction. Finally, the benchmarks for manufacturing inorganic solid-state pouch cells to meet practical high energy density targets are provided in this review for the development of commercially viable products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号