advance therapy medicinal product

  • 文章类型: Journal Article
    Background: Cell and gene therapy products belong to a diverse class of biopharmaceuticals known as advanced therapy medicinal products. Cell and gene therapy products are used for the treatment and prevention of diseases that until recently were only managed chronically. The objective of this study was to examine the characteristics of market authorizations, discontinuations, and prices of cellular and gene therapy products worldwide. Data and Methods: We conducted an electronic search of authorized cell, tissue-engineered, and gene therapy products from the databases of the main drug regulatory agencies. The analysis excluded hematopoietic progenitor cell cord blood products authorized by the U.S. Food and Drug Administration. Price information was derived from the Red Book (Truven Health Analytics) for the United States, health technology assessment agencies for Europe, and other public sector sources and company news for other countries. We also searched the scientific literature for authorizations, discontinuations, and price information using MEDLINE/PubMed, Cochrane Library, Google Scholar, and EMBASE databases. All cost data were converted to U.S. dollars. Descriptive analysis was conducted in this study. Results: There were 52 different cell, tissue engineering and gene therapy products with 69 market authorizations in the world as of December 31, 2018. The products included 18 (34%) cell therapies, 23 (43.4%) tissue engineered products, and 12 (22.6%) gene therapies. There were 21 (30.4% of all authorizations) cell therapy, 26 (37.7%) tissue-engineered, and 22 (31.9%) gene therapy market authorizations. The EMA withdrew the authorization for two tissue engineering products, one cell therapy and one gene therapy, and New Zealand lapsed approval of one cell therapy. Most products were first authorized after 2010, including 10 (83.3%) gene therapies, 13 (72.2%) cell therapies, and 13 (56.5%) tissue-engineered products. The treatment price for four allogenic cell therapies varied from $2,150 in India to $200,000 in Canada. The treatment price for three autologous cell therapies ranged from $61,500 in the United Kingdom to a listed price of $169,206 in the United States. Tissue-engineered treatment prices varied from $400 in South Korea to $123,154 in Japan. Gene therapy treatment prices ranged from $5,501 for tonogenchoncel-L in South Korea to $1,398,321 for alipogene tiparvovec in Germany. Conclusions: A significant number of new cell, tissue, and gene therapies have been approved in the past decade. Most products were conditionally authorized and targeted rare cancers, genetic diseases, and other debilitating diseases. However, there are also products approved for cosmetic reasons. Cell, tissue, and gene therapies are among the most expensive therapies available. Healthcare systems are not prepared to assume the cost of future therapies for a myriad of rare diseases and common diseases of epidemic proportions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Advanced therapy medicinal products, a new class of products with promising therapeutic effects, have been classified as medicinal products and as such should be developed according to a well-structured development plan, to establish their quality, safety and efficacy profile and conclude, at the time of the marketing authorisation evaluation, on a positive risk/benefit balance for patients. An important part of this development plan is achieved through clinical trials, which have also to be approved according to a well-established regulatory process, prior any initiation. This chapter is dedicated to describe the regulatory pathway to be followed in France, before initiating any clinical trial with those investigational advanced therapy medicinal products. In France, to get the final authorisation to initiate a clinical trial, the legislation imposes to run in parallel two independent but complementary authorisation procedures. The first procedure is aimed at assessing the ethical aspect of the biomedical research, while the second has to review the safety and regulatory aspects. A third procedure has to be envisaged where in case the investigational product consists or contains a genetically modified organism. The French system herein described is in line with the EU regulation on clinical trial and follows the respective deadlines for granting the final approval. The complexity of the procedure is in fact more due to the complexity of the products and protocols to be assessed than to the procedure itself which is now very close to the well-known procedure applied routinely for more conventional chemical or biological candidate medicinal products.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号