adenine base editing

  • 文章类型: Journal Article
    X-连锁肾上腺脑白质营养不良(ALD),由ABCD1突变引起的遗传性神经代谢紊乱,编码过氧化物酶体ABC转运体,主要影响大脑,脊髓,肾上腺,和睾丸。在ALD患者中,超长链脂肪酸(VLCFAs)无法进入过氧化物酶体并随后进行β-氧化,导致它们在体内的积累。尚未测试是否可以利用体内碱基编辑或主编辑来改善ALD。我们通过将含有致病性变体的人cDNA插入小鼠Abcd1基因座中,开发了ALD的人源化小鼠模型。人源化ALD模型显示VLCFA水平增加。为了纠正突变,我们测试了碱基编辑和初免编辑,发现使用ABE8e(V106W)进行碱基编辑可以纠正患者来源的成纤维细胞中的突变,效率为7.4%.腺相关病毒(AAV)介导的NG-ABE8e(V106W)的全身递送能够对小鼠大脑中的致病变异进行稳健的校正(校正效率:~5.5%),脊髓(~5.1%),和肾上腺(~2%),导致血浆C26:0/C22:0水平显着降低。这种建立的人源化小鼠模型和使用碱基编辑器成功校正致病变体作为治疗人类ALD疾病的重要步骤。
    X-linked adrenoleukodystrophy (ALD), an inherited neurometabolic disorder caused by mutations in ABCD1, which encodes the peroxisomal ABC transporter, mainly affects the brain, spinal cord, adrenal glands, and testes. In ALD patients, very-long-chain fatty acids (VLCFAs) fail to enter the peroxisome and undergo subsequent β-oxidation, resulting in their accumulation in the body. It has not been tested whether in vivo base editing or prime editing can be harnessed to ameliorate ALD. We developed a humanized mouse model of ALD by inserting a human cDNA containing the pathogenic variant into the mouse Abcd1 locus. The humanized ALD model showed increased levels of VLCFAs. To correct the mutation, we tested both base editing and prime editing and found that base editing using ABE8e(V106W) could correct the mutation in patient-derived fibroblasts at an efficiency of 7.4%. Adeno-associated virus (AAV)-mediated systemic delivery of NG-ABE8e(V106W) enabled robust correction of the pathogenic variant in the mouse brain (correction efficiency: ∼5.5%), spinal cord (∼5.1%), and adrenal gland (∼2%), leading to a significant reduction in the plasma levels of C26:0/C22:0. This established humanized mouse model and the successful correction of the pathogenic variant using a base editor serve as a significant step toward treating human ALD disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    基于CRISPR-Cas的基因组编辑对于推进植物基因组学和作物增强具有巨大的前景。然而,低编辑活动的挑战使编辑事件的识别变得复杂。在这项研究中,我们引入多个单转录单位代理报告(STU-SR)系统来增强基因组编辑植物的选择。这些系统利用为内源基因设计的相同sgRNA来编辑报告基因,在报告基因编辑活性和内源基因之间建立直接联系。采用各种策略来恢复功能性报告基因后基因组编辑,包括在STU-SR-SSA系统中用于同源重组的有效单链退火(SSA)。STU-SR-BE系统利用碱基编辑来恢复起始密码子,丰富的C到T和A到G基础编辑事件。我们的结果展示了这些STU-SR系统在增强单子叶水稻基因组编辑事件中的有效性,包括基于Cas9核酸酶的靶向诱变,胞嘧啶碱基编辑,和腺嘌呤碱基编辑。该系统表现出与Cas9变体的兼容性,比如无PAM的SpRY,并被证明可以促进甘蓝的基因组编辑,双子叶植物作物。总之,我们已经开发了高效和通用的STU-SR系统来富集基因组编辑的植物。
    CRISPR-Cas-based genome editing holds immense promise for advancing plant genomics and crop enhancement. However, the challenge of low editing activity complicates the identification of editing events. In this study, we introduce multiple single transcript unit surrogate reporter (STU-SR) systems to enhance the selection of genome-edited plants. These systems use the same single guide RNAs designed for endogenous genes to edit reporter genes, establishing a direct link between reporter gene editing activity and that of endogenous genes. Various strategies are used to restore functional reporter genes after genome editing, including efficient single-strand annealing (SSA) for homologous recombination in STU-SR-SSA systems. STU-SR-base editor systems leverage base editing to reinstate the start codon, enriching C-to-T and A-to-G base editing events. Our results showcase the effectiveness of these STU-SR systems in enhancing genome editing events in the monocot rice, encompassing Cas9 nuclease-based targeted mutagenesis, cytosine base editing, and adenine base editing. The systems exhibit compatibility with Cas9 variants, such as the PAM-less SpRY, and are shown to boost genome editing in Brassica oleracea, a dicot vegetable crop. In summary, we have developed highly efficient and versatile STU-SR systems for enrichment of genome-edited plants.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    杜氏肌营养不良症(DMD)是男性最常见的遗传性疾病,以肌营养不良蛋白缺乏为特征,进行性肌肉萎缩,心功能不全,过早死亡,没有有效的治疗选择。这里,我们研究了腺嘌呤碱基编辑是否可以纠正病理性无义点突变,从而导致肌营养不良蛋白基因中过早终止密码子。我们在DMD患者队列中鉴定出27个致病的无义突变。用腺嘌呤碱基编辑器(ABE)处理可以通过直接A-G编辑由DMD患者衍生的诱导多能干细胞产生的心肌细胞中的病理性无义突变来恢复肌养蛋白表达。我们还产生了两种表达人肌营养不良蛋白基因的带有突变的外显子23或30的DMD的人源化小鼠模型。肌内给药ABE,由普遍存在或肌肉特异性启动子驱动,可以在体内纠正这些无义突变,尽管在外显子30中具有更高的效率,但可以恢复人源化DMD小鼠骨骼肌纤维中的肌营养不良蛋白表达。此外,在人源化DMD小鼠的旋转杆试验中,ABE与人单指导RNA(sgRNA)的单次全身递送可诱导全身肌养蛋白表达并改善肌肉功能.这些发现表明,ABE与人类sgRNA可以在小鼠中提供DMD的治疗性缓解,为单基因疾病腺嘌呤碱基编辑疗法的开发提供依据。
    Duchenne muscular dystrophy (DMD) is the most prevalent herediatry disease in men, characterized by dystrophin deficiency, progressive muscle wasting, cardiac insufficiency, and premature mortality, with no effective therapeutic options. Here, we investigated whether adenine base editing can correct pathological nonsense point mutations leading to premature stop codons in the dystrophin gene. We identified 27 causative nonsense mutations in our DMD patient cohort. Treatment with adenine base editor (ABE) could restore dystrophin expression by direct A-to-G editing of pathological nonsense mutations in cardiomyocytes generated from DMD patient-derived induced pluripotent stem cells. We also generated two humanized mouse models of DMD expressing mutation-bearing exons 23 or 30 of human dystrophin gene. Intramuscular administration of ABE, driven by ubiquitous or muscle-specific promoters could correct these nonsense mutations in vivo, albeit with higher efficiency in exon 30, restoring dystrophin expression in skeletal fibers of humanized DMD mice. Moreover, a single systemic delivery of ABE with human single guide RNA (sgRNA) could induce body-wide dystrophin expression and improve muscle function in rotarod tests of humanized DMD mice. These findings demonstrate that ABE with human sgRNAs can confer therapeutic alleviation of DMD in mice, providing a basis for development of adenine base editing therapies in monogenic diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    消失的白质(VWM)是由真核翻译起始因子2B亚基中的隐性突变引起的致命的脑白质营养不良。目前,VWM没有有效的治疗方法。这里,我们在小鼠模型中评估了腺嘌呤碱基编辑纠正人类致病性VWM变异的潜力.使用腺相关病毒载体,我们将内含素分裂的腺嘌呤碱基编辑器传递到新生VWM小鼠的脑室中,导致皮质中Eif2b5R191H变体的校正为45.9±5.9%。在雌性VWM动物中,治疗略微增加了成熟的星形胶质细胞群,并部分恢复了综合应激反应(ISR)。这导致了女性体重和握力的显着改善,然而,运动障碍没有获救。进一步的分子分析表明,更广泛的表型拯救需要更精确的编辑(即较低的旁观者编辑率)以及更有效地将基础编辑传递到深脑区域和少突胶质细胞。我们的研究强调了潜力,但也指出了局限性,目前用于治疗VWM或其他脑白质营养不良的体内碱基编辑方法。
    Vanishing white matter (VWM) is a fatal leukodystrophy caused by recessive mutations in subunits of the eukaryotic translation initiation factor 2B. Currently, there are no effective therapies for VWM. Here, we assessed the potential of adenine base editing to correct human pathogenic VWM variants in mouse models. Using adeno-associated viral vectors, we delivered intein-split adenine base editors into the cerebral ventricles of newborn VWM mice, resulting in 45.9% ± 5.9% correction of the Eif2b5R191H variant in the cortex. Treatment slightly increased mature astrocyte populations and partially recovered the integrated stress response (ISR) in female VWM animals. This led to notable improvements in bodyweight and grip strength in females; however, locomotor disabilities were not rescued. Further molecular analyses suggest that more precise editing (i.e., lower rates of bystander editing) as well as more efficient delivery of the base editors to deep brain regions and oligodendrocytes would have been required for a broader phenotypic rescue. Our study emphasizes the potential, but also identifies limitations, of current in vivo base-editing approaches for the treatment of VWM or other leukodystrophies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    被称为调节剂的小分子药物可以治疗约90%的囊性纤维化(CF)患者,但不适用于提前终止密码子变体,如W1282X(c.3846G>A)。在这里,我们评估了两种基因编辑策略,腺嘌呤基础编辑(ABE)校正W1282X,和包含外显子23-27(SE23-27)的CFTR超蛋白的非同源性靶向整合(HITI),以使得能够在没有W1282X的情况下表达CFTRmRNA。在稳定表达带有W1282X的CFTR表达小基因的Flp-In-293细胞中,ABE校正了24%的W1282X等位基因,从无义介导的衰变中拯救CFTRmRNA并恢复蛋白质表达。然而,相邻腺嘌呤的旁观者编辑(c.3847A>G),引起影响CFTR成熟并消融离子通道活性的氨基酸变化(R1283G)。在W1282X纯合的原代人鼻上皮细胞中,ABE纠正了27%的等位基因,但是由于旁观者的编辑水平明显较低,CFTR通道功能恢复至野生型水平的16%。使用HITI方法,在16HBEgeW1282X细胞中CFTR基因座内含子22中SE23-27的正确整合在5.8%的等位基因中检测到,产生7.8%的含有SE23-27序列的CFTR转录物。对HITI-SE23-27纯合的克隆系进行分析,产生全长成熟蛋白,并将CFTR阴离子通道活性恢复到野生型水平的10%,在用CF调节剂的三重组合治疗时可以增加三倍。总的来说,这些数据表明两种不同的编辑策略可以成功纠正W1282X,第二个最常见的I类变体,伴随CFTR功能的恢复。
    Small molecule drugs known as modulators can treat ~90% of people with cystic fibrosis (CF), but do not work for premature termination codon variants such as W1282X (c.3846G>A). Here we evaluated two gene editing strategies, Adenine Base Editing (ABE) to correct W1282X, and Homology-Independent Targeted Integration (HITI) of a CFTR superexon comprising exons 23-27 (SE23-27) to enable expression of a CFTR mRNA without W1282X. In Flp-In-293 cells stably expressing a CFTR expression minigene bearing W1282X, ABE corrected 24% of W1282X alleles, rescued CFTR mRNA from nonsense mediated decay and restored protein expression. However, bystander editing at the adjacent adenine (c.3847A>G), caused an amino acid change (R1283G) that affects CFTR maturation and ablates ion channel activity. In primary human nasal epithelial cells homozygous for W1282X, ABE corrected 27% of alleles, but with a notably lower level of bystander editing, and CFTR channel function was restored to 16% of wild-type levels. Using the HITI approach, correct integration of a SE23-27 in intron 22 of the CFTR locus in 16HBEge W1282X cells was detected in 5.8% of alleles, resulting in 7.8% of CFTR transcripts containing the SE23-27 sequence. Analysis of a clonal line homozygous for the HITI-SE23-27 produced full-length mature protein and restored CFTR anion channel activity to 10% of wild-type levels, which could be increased three-fold upon treatment with the triple combination of CF modulators. Overall, these data demonstrate two different editing strategies can successfully correct W1282X, the second most common class I variant, with a concomitant restoration of CFTR function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Duchenne型肌营养不良症是一种X连锁单基因疾病,由肌营养不良蛋白基因(DMD)突变引起,其特征是进行性肌肉无力,导致步行丧失和预期寿命下降。由于目前治疗杜兴氏肌营养不良症的标准只是治疗症状,迫切需要能够纠正潜在基因突变的治疗方式.虽然在临床试验中正在探索几种基因替代疗法,一种可以直接纠正基因组DNA突变的新兴方法是碱基编辑。我们最近开发了CRISPR-SKIP,通过在基因组DNA中的剪接受体上引入C>T或A>G突变来诱导永久性外显子跳跃的碱基编辑策略,当基因组缺失导致框外DMD转录物时,其可用于治疗性恢复肌营养不良蛋白表达。我们现在证明CRISPR-SKIP可以通过高效破坏人DMD外显子45中的剪接受体来适应某些形式的Duchenne肌营养不良。这使得开放阅读框恢复和肌营养不良蛋白表达的恢复。我们还证明了AAV递送的分裂内嵌蛋白碱基编辑器在培养的人细胞和体内编辑DMD外显子45的剪接受体,强调这一策略的治疗潜力。
    Duchenne muscular dystrophy is an X-linked monogenic disease caused by mutations in the dystrophin gene (DMD) characterized by progressive muscle weakness, leading to loss of ambulation and decreased life expectancy. Since the current standard of care for Duchenne muscular dystrophy is to merely treat symptoms, there is a dire need for treatment modalities that can correct the underlying genetic mutations. While several gene replacement therapies are being explored in clinical trials, one emerging approach that can directly correct mutations in genomic DNA is base editing. We have recently developed CRISPR-SKIP, a base editing strategy to induce permanent exon skipping by introducing C > T or A > G mutations at splice acceptors in genomic DNA, which can be used therapeutically to recover dystrophin expression when a genomic deletion leads to an out-of-frame DMD transcript. We now demonstrate that CRISPR-SKIP can be adapted to correct some forms of Duchenne muscular dystrophy by disrupting the splice acceptor in human DMD exon 45 with high efficiency, which enables open reading frame recovery and restoration of dystrophin expression. We also demonstrate that AAV-delivered split-intein base editors edit the splice acceptor of DMD exon 45 in cultured human cells and in vivo, highlighting the therapeutic potential of this strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    假单胞菌属是一种大属,由于其独特的代谢多功能性,栖息在不同的环境中。它的应用范围从环境到工业生物技术。需要允许精确和有效的遗传操作的分子工具来理解和利用其全部潜力。这里,我们报告了高效腺嘌呤碱基编辑系统的发展,即,dxABE-PS,假单胞菌物种。该系统允许A:T→G:C在宽目标光谱上的转换效率高达100%,因为我们使用xCas93.7,其识别NGPAM。为了增强dxABE-PS实用程序,我们使用ABE开发了蛋白质功能障碍的预测工作流程,即,DABE-CSP(通过CRISPOR-SIFT预测的ABE功能障碍)。我们应用DABE-CSP灭活恶臭假单胞菌KT2440中的几个基因,以积累尼龙前体,即,从邻苯二酚中提取的粘康酸,收率为100%。此外,我们通过开发从西太平洋海山地区的沉积物样品中分离出的P.chengduenisdY56-96的nxABE系统,将ABE扩展到非模型假单胞菌物种。一起来看,与DABE-CSP一起建立ABE系统将快速研究假单胞菌。
    Pseudomonas is a large genus that inhabits diverse environments due to its distinct metabolic versatility. Its applications range from environmental to industrial biotechnology. Molecular tools that allow precise and efficient genetic manipulation are required to understand and harness its full potential. Here, we report the development of a highly efficient adenine base editing system, i.e., dxABE-PS, for Pseudomonas species. The system allows A:T → G:C transition with up to 100% efficiency along a broad target spectrum because we use xCas9 3.7, which recognizes NG PAM. To enhance the dxABE-PS utility, we develop a prediction workflow for protein dysfunction using ABE, namely, DABE-CSP (dysfunction via ABE through CRISPOR-SIFT prediction). We applied DABE-CSP to inactivate several genes in Pseudomonas putida KT2440 to accumulate a nylon precursor, i.e., muconic acid from catechol with 100% yield. Moreover, we expanded the ABE to non-model Pseudomonas species by developing an nxABE system for P. chengduensisDY56-96, isolated from sediment samples from the seamount area in the West Pacific Ocean. Taken together, the establishment of the ABE systems along with DABE-CSP will fast-track research on Pseudomonas species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Stargardt黄斑营养不良(STGD1)是全球最常见的遗传性儿童失明形式,目前尚无治疗方法。它是由ABCA4突变引起的常染色体隐性遗传疾病。迄今为止,已经测试了多种基因补充方法来创建一种疗法,一些达到临床试验。新技术,例如基于CRISPR-Cas的编辑系统,通过允许致病性突变的靶向DNA或RNA碱基编辑,为解决遗传疾病提供了令人兴奋的前沿。ABCA4有1200个已知的致病突变,其中63%是适合这种编辑技术的过渡突变。在这份报告中,我们从gnomAD的可用数据中筛选了ABCA4中已知的“致病性”和“可能的致病性”突变,莱顿开放变异数据库(LOVD),和ClinVar有关相关基础编辑的潜在PAM站点,包括化脓性链球菌Cas(SpCas),金黄色葡萄球菌Cas(SaCas),和SaCas的KKH变体(Sa-KKH)。总的来说,筛选的突变,53%(ClinVar),71%(LOVD),和71%(gnomAD),是可编辑的,致病性过渡突变,其中35-47%拥有“理想”的PAM网站。在这些突变中,16-20%发生在多个PAM站点的范围内,启用各种编辑策略。Further,在来自德国的三个队列的相关患者数据中,丹麦,和中国,我们发现44-76%的病人,取决于复杂等位基因的存在,至少有一个与附近的SaCas的过渡突变,SpCas,或Sa-KKHPAM站点,这将允许潜在的DNA碱基编辑作为一种治疗策略。考虑到Stargardt遗传景观的复杂性,这些发现更清楚地了解了DNA碱基编辑方法作为ABCA4基因治疗策略的应用潜力.
    Stargardt macular dystrophy (STGD1) is the most common form of inherited childhood blindness worldwide and for which no current treatments exist. It is an autosomal recessive disease caused by mutations in ABCA4. To date, a variety of gene supplementation approaches have been tested to create a therapy, with some reaching clinical trials. New technologies, such as CRISPR-Cas based editing systems, provide an exciting frontier for addressing genetic disease by allowing targeted DNA or RNA base editing of pathogenic mutations. ABCA4 has ∼1,200 known pathogenic mutations, of which ∼63% are transition mutations amenable to this editing technology. In this report, we screened the known \"pathogenic\" and \"likely pathogenic\" mutations in ABCA4 from available data in gnomAD, Leiden Open Variation Database (LOVD), and ClinVar for potential PAM sites of relevant base editors, including Streptococcus pyogenes Cas (SpCas), Staphylococcus aureus Cas (SaCas), and the KKH variant of SaCas (Sa-KKH). Overall, of the mutations screened, 53% (ClinVar), 71% (LOVD), and 71% (gnomAD), were editable, pathogenic transition mutations, of which 35-47% had \"ideal\" PAM sites. Of these mutations, 16-20% occur within a range of multiple PAM sites, enabling a variety of editing strategies. Further, in relevant patient data looking at three cohorts from Germany, Denmark, and China, we find that 44-76% of patients, depending on the presence of complex alleles, have at least one transition mutation with a nearby SaCas, SpCas, or Sa-KKH PAM site, which would allow for potential DNA base editing as a treatment strategy. Given the complexity of the genetic landscape of Stargardt, these findings provide a clearer understanding of the potential for DNA base editing approaches to be applied as ABCA4 gene therapy strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    一对被诊断为层状鱼鳞病携带者的夫妇,常染色体隐性遗传性罕见疾病,两次怀孕失败。他们的血液样本在TGM1基因中显示出相同的杂合c.607C>T突变。然而,我们发现大约98.4%的精子有突变,提示可能的从头生殖系突变。为了探索纠正这种突变的可能性,我们使用两种不同的腺嘌呤碱基编辑(ABEs)结合相关截短的单向导RNA(sgRNA)修复突变合子的致病突变.我们的结果表明,ABEmax-NG与20bp长度的sgRNA结合的编辑效率为73.8%,Sc-ABEmax与19bp长度的sgRNA结合的编辑效率为78.7%。全基因组测序(WGS)和深度测序分析证明了精确的DNA编辑。这项研究揭示了用ABE系统纠正胚胎基因突变的可能性。
    A couple diagnosed as carriers for lamellar ichthyosis, an autosomal recessive rare disease, encountered two pregnancy losses. Their blood samples showed the same heterozygous c.607C>T mutation in the TGM1 gene. However, we found that about 98.4% of the sperm had mutations, suggesting possible de novo germline mutation. To explore the probability of correcting this mutation, we used two different adenine base editors (ABEs) combined with related truncated single guide RNA (sgRNA) to repair the pathogenic mutation in mutant zygotes. Our results showed that the editing efficiency was 73.8% for ABEmax-NG combined with 20-bp-length sgRNA and 78.7% for Sc-ABEmax combined with 19-bp-length sgRNA. The whole-genome sequencing (WGS) and deep sequencing analysis demonstrated precise DNA editing. This study reveals the possibility of correcting the genetic mutation in embryos with the ABE system.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    最流行的CRISPR-SpCas9系统识别规范的NGG原型间隔区相邻基序(PAMs)。以前设计的SpCas9变体,如Cas9-NG,在基因组编辑中支持富含G的PAMs。在这份手稿中,我们描述了一种新的植物基因组编辑系统,该系统基于混合iSpyMacCas9平台,允许靶向诱变,C到T基地编辑,andAtoGbaseeditingatA-richPAMs.ThisstudyfillsamajortechnologygapintheCRISPR-Cas9systemforeditingNAARPAMsinplants,极大地扩展了CRISPR-Cas9的靶向范围。最后,我们的载体系统与Gateway克隆完全兼容,并将与所有现有的单向导RNA表达系统一起工作,便于他人轻松采用这些系统。我们预计会有更多的工具,比如主要编辑,同源定向修复,CRISPR干扰,和CRISPR激活,将基于我们有前途的iSpyMacCas9平台进一步开发。
    The most popular CRISPR-SpCas9 system recognizes canonical NGG protospacer adjacent motifs (PAMs). Previously engineered SpCas9 variants, such as Cas9-NG, favor G-rich PAMs in genome editing. In this manuscript, we describe a new plant genome-editing system based on a hybrid iSpyMacCas9 platform that allows for targeted mutagenesis, C to T base editing, and A to G base editing at A-rich PAMs. This study fills a major technology gap in the CRISPR-Cas9 system for editing NAAR PAMs in plants, which greatly expands the targeting scope of CRISPR-Cas9. Finally, our vector systems are fully compatible with Gateway cloning and will work with all existing single-guide RNA expression systems, facilitating easy adoption of the systems by others. We anticipate that more tools, such as prime editing, homology-directed repair, CRISPR interference, and CRISPR activation, will be further developed based on our promising iSpyMacCas9 platform.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号