actomyosin

肌动球蛋白
  • 文章类型: Journal Article
    通过复杂的3D环境的细胞迁移依赖于肌动蛋白和微管之间的相互作用。一项新的研究表明,当细胞通过狭窄的收缩时,细胞后部依赖CLASP的微管稳定控制肌动球蛋白的收缩性,以实现核易位并保持细胞完整性。
    Cell migration through complex 3D environments relies on the interplay between actin and microtubules. A new study shows that, when cells pass through narrow constrictions, CLASP-dependent microtubule stabilisation at the cell rear controls actomyosin contractility to enable nuclear translocation and preserve cell integrity.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞大小是显著影响细胞生理学和功能的关键物理性质。然而,细胞大小对干细胞规格的影响在很大程度上仍然未知.这里,我们研究了人多能干细胞分化为定形内胚层(DE)过程中细胞大小的动态变化.有趣的是,随着DE分化的发展,细胞大小表现出逐渐减小的刚度较高。此外,应用高渗压力或化学物质来加速细胞大小的显著减小和特异性地增强DE分化。通过在功能上干预机械敏感元件,我们已经确定肌动球蛋白活性是DE分化和细胞大小减小的关键介质。机械上,细胞大小的减少诱导肌动球蛋白依赖性血管动蛋白(AMOT)核易位,抑制Yes相关蛋白(YAP)活性,从而促进DE分化。一起,我们的研究在细胞大小缩小和DE分化之间建立了一种新的联系,由AMOT核易位介导。此外,我们的发现表明,渗透压的应用可以有效地促进人的内胚层谱系分化。
    Cell size is a crucial physical property that significantly impacts cellular physiology and function. However, the influence of cell size on stem cell specification remains largely unknown. Here, we investigated the dynamic changes in cell size during the differentiation of human pluripotent stem cells into definitive endoderm (DE). Interestingly, cell size exhibited a gradual decrease as DE differentiation progressed with higher stiffness. Furthermore, the application of hypertonic pressure or chemical to accelerate the reduction in cell size significantly and specifically enhanced DE differentiation. By functionally intervening in mechanosensitive elements, we have identified actomyosin activity as a crucial mediator of both DE differentiation and cell size reduction. Mechanistically, the reduction in cell size induces actomyosin-dependent angiomotin (AMOT) nuclear translocation, which suppresses Yes-associated protein (YAP) activity and thus facilitates DE differentiation. Together, our study has established a novel connection between cell size diminution and DE differentiation, which is mediated by AMOT nuclear translocation. Additionally, our findings suggest that the application of osmotic pressure can effectively promote human endodermal lineage differentiation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在迁移细胞的教科书插图中,肌动球蛋白收缩性通常被描述为细胞体收缩所必需的收缩力。这个教条已经被分子离合器模型改造了,承认肌动球蛋白牵引力也在前缘产生和传递生物力学信号,使细胞能够在机械复杂的环境中感知和塑造它们的迁移路径。为了实现这些互补的功能,肌动球蛋白系统沿迁移细胞的前后轴组装了收缩能量梯度。这里,我们强调了肌动球蛋白系统的分层组装和自我调节网络结构,并解释了不同非肌肉肌球蛋白II(NMII)旁系同源物的动力学在收缩力产生过程中如何协同作用。我们的目的是强调突起的形成,细胞粘附,收缩,和收缩在不同的迁移模式下时空整合,包括趋化性和Durotaxis。最后,我们假设不同的NMII旁系物可能如何调整体内迁移的各个方面,强调未来的研究方向。
    In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    自发运动是大多数后生细胞的共同特征,通常归因于肌动球蛋白网络的性质。这种产生力的机器已经被研究到最微小的分子细节,尤其是在lamellipodium驱动的迁移中。然而,肌动球蛋白网络如何在收缩驱动的变形虫细胞内工作仍然缺乏统一原则。这里,使用来自HeLa细胞的稳定运动泡作为模型变形虫运动系统,我们在单丝水平上成像了肌动蛋白皮质的动力学,并揭示了三个不同的流变阶段的共存。我们引入了“平流渗滤”,“刚性渗滤和主动平流协同作用的过程,将肌动蛋白网络的机械性能在空间上组织成最小和通用的运动机制。从我们对简化系统的观察来看,我们推测这个模型可以解释,下降到单根肌动蛋白丝水平,变形虫细胞,如癌症或免疫细胞,可以有效地推动通过复杂的3D环境。
    Spontaneous locomotion is a common feature of most metazoan cells, generally attributed to the properties of actomyosin networks. This force-producing machinery has been studied down to the most minute molecular details, especially in lamellipodium-driven migration. Nevertheless, how actomyosin networks work inside contraction-driven amoeboid cells still lacks unifying principles. Here, using stable motile blebs from HeLa cells as a model amoeboid motile system, we imaged the dynamics of the actin cortex at the single filament level and revealed the co-existence of three distinct rheological phases. We introduce \"advected percolation,\" a process where rigidity percolation and active advection synergize, spatially organizing the actin network\'s mechanical properties into a minimal and generic locomotion mechanism. Expanding from our observations on simplified systems, we speculate that this model could explain, down to the single actin filament level, how amoeboid cells, such as cancer or immune cells, can propel efficiently through complex 3D environments.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在高时空分辨率下对秀丽隐杆线虫合子的细胞动力学沟侵蚀进行的新分析表明,而不是一个稳定的过程,空间均匀收缩,犁沟生长是由围绕犁沟移动的复杂收缩振荡调制的,可能以传播波的形式。
    A new analysis of cytokinetic furrow ingression in the Caenorhabditis elegans zygote at high spatiotemporal resolution demonstrates that, rather than being a process of steady, spatially uniform constriction, furrow ingression is modulated by complex contractile oscillations that move around the furrow, possibly in the form of propagating waves.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    上皮细胞之间的粘附使上皮组织在形态发生过程中具有显着的机械行为。然而,目前尚不清楚细胞间粘附如何影响静态和动态流动的融合上皮组织的力学。这里,我们系统地调节果蝇胚胎中E-cadherin介导的粘附,并研究在与体轴伸长相关的剧烈组织重塑和流动之前和期间对胚带上皮力学行为的影响。在轴伸长之前,我们发现,增加E-cadherin水平会产生包含更多细长细胞的组织,并预测会更像流体,提供减少的组织流动阻力。在轴伸长期间,我们发现E-cadherin的主要作用是调节细胞通过重排事件进行的速度。在轴伸长之前和期间,E-钙粘蛋白水平影响肌动球蛋白依赖力的模式,支持E-cadherin部分通过对肌动球蛋白的影响来调节组织力学的观点。值得注意的是,E-cadherin水平的4倍变化对整体组织结构和血流的影响相对较弱,这表明该系统对在形成完整组织的该范围内的绝对E-cadherin水平的变化具有耐受性。一起来看,这些发现揭示了E-cadherin介导的粘附在体内控制组织结构和动力学方面的双重作用,有时是相反的作用。这导致融合组织中粘连和流动之间的意外关系。
    Adhesion between epithelial cells enables the remarkable mechanical behavior of epithelial tissues during morphogenesis. However, it remains unclear how cell-cell adhesion influences mechanics in both static and dynamically flowing confluent epithelial tissues. Here, we systematically modulate E-cadherin-mediated adhesion in the Drosophila embryo and study the effects on the mechanical behavior of the germband epithelium before and during dramatic tissue remodeling and flow associated with body axis elongation. Before axis elongation, we find that increasing E-cadherin levels produces tissue comprising more elongated cells and predicted to be more fluid-like, providing reduced resistance to tissue flow. During axis elongation, we find that the dominant effect of E-cadherin is tuning the speed at which cells proceed through rearrangement events. Before and during axis elongation, E-cadherin levels influence patterns of actomyosin-dependent forces, supporting the notion that E-cadherin tunes tissue mechanics in part through effects on actomyosin. Notably, the effects of ∼4-fold changes in E-cadherin levels on overall tissue structure and flow are relatively weak, suggesting that the system is tolerant to changes in absolute E-cadherin levels over this range where an intact tissue is formed. Taken together, these findings reveal dual-and sometimes opposing-roles for E-cadherin-mediated adhesion in controlling tissue structure and dynamics in vivo, which result in unexpected relationships between adhesion and flow in confluent tissues.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动球蛋白皮质是通过细胞骨架重塑产生驱动形状变化的力的活性材料。细胞分裂是重要的细胞分裂事件,在此期间皮质肌动球蛋白环关闭以分离两个子细胞。我们的主动凝胶理论预测,由生化振荡器控制并经历机械应变的肌动球蛋白系统将表现出复杂的时空行为。为了测试体内活性材料是否表现出时空复杂的动力学,我们以前所未有的时间分辨率对秀丽隐杆线虫胚胎进行成像,并发现细胞动力学皮质部分经历了加速和减速的周期性阶段。收缩振荡表现出一系列周期性,包括那些比RhoA脉冲的时间尺度长得多的周期,胞质分裂比任何其他生物学背景都短。在体内或计算机上修改机械反馈表明,收缩振荡的时间随机械反馈的强度而延长。在速度振荡周期较长的情况下,会发生快速局部振铃,可能是由于局部应力增加,因此,机械反馈。在材料周转率很高的地方也会发生快速侵入,在体内和硅。我们建议在脉冲RhoA活性引发的下游,机械反馈,包括但不限于材料平流,将收缩性的时间尺度扩展到生化输入的时间尺度之外,因此,使其对激活的波动具有鲁棒性。尽管需要从压实中恢复细胞骨架重塑,但收缩性的周向传播可能允许持续的收缩性。因此,比如生化反馈,机械反馈提供活性材料的响应性和鲁棒性。
    The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞分裂是母细胞的细胞质分离成子细胞的过程。这是由肌动球蛋白收缩环驱动的,该环产生皮质收缩性并驱动卵裂沟侵入,导致形成薄的细胞间桥。虽然胞质分裂过程中的细胞骨架重组已经得到了广泛的研究,对质膜的时空动力学知之甚少。这里,我们对白血病细胞胞质分裂过程中细胞表面的质膜脂质和蛋白质动力学进行成像和建模。我们揭示了在卵裂沟和细胞间桥的质膜的广泛积累和折叠,伴随着细胞极处质膜的耗尽和展开。这些膜动力学是由两种肌动球蛋白驱动的生物物理机制引起的:分裂沟的径向收缩导致表观细胞表面积的局部压缩和质膜在沟中的积累,而肌动球蛋白皮质流将质膜拖向细胞分裂平面,因为沟进入。这些影响的大小取决于质膜的流动性,皮层粘连,和皮质收缩性。总的来说,我们的工作揭示了分裂沟质膜积累的细胞内在机械调节,这可能在整个细胞动力学细胞中产生局部的膜张力差异.这可能会局部改变内吞作用,胞吐作用,和机械传导,同时也作为一种自我保护机制,以抵抗由于细胞间桥的高膜张力而引起的胞质分裂失败。
    Cytokinesis is the process where the mother cell\'s cytoplasm separates into daughter cells. This is driven by an actomyosin contractile ring that produces cortical contractility and drives cleavage furrow ingression, resulting in the formation of a thin intercellular bridge. While cytoskeletal reorganization during cytokinesis has been extensively studied, less is known about the spatiotemporal dynamics of the plasma membrane. Here, we image and model plasma membrane lipid and protein dynamics on the cell surface during leukemia cell cytokinesis. We reveal an extensive accumulation and folding of the plasma membrane at the cleavage furrow and the intercellular bridge, accompanied by a depletion and unfolding of the plasma membrane at the cell poles. These membrane dynamics are caused by two actomyosin-driven biophysical mechanisms: the radial constriction of the cleavage furrow causes local compression of the apparent cell surface area and accumulation of the plasma membrane at the furrow, while actomyosin cortical flows drag the plasma membrane toward the cell division plane as the furrow ingresses. The magnitude of these effects depends on the plasma membrane fluidity, cortex adhesion, and cortical contractility. Overall, our work reveals cell-intrinsic mechanical regulation of plasma membrane accumulation at the cleavage furrow that is likely to generate localized differences in membrane tension across the cytokinetic cell. This may locally alter endocytosis, exocytosis, and mechanotransduction, while also serving as a self-protecting mechanism against cytokinesis failures that arise from high membrane tension at the intercellular bridge.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    协调的细胞形状变化是组织形态发生的主要驱动因素,上皮细胞顶端收缩导致组织弯曲。在果蝇胚胎唾液腺的试管出芽过程中,我们先前确定了根尖-内侧肌动球蛋白之间的关键相互作用,驱动根尖收缩,与底层的纵向微管阵列。在这个微管-肌动球蛋白界面上,蛋白质的中心积累:如前所述,微管-肌动蛋白-交联剂Shot和负端粘合剂Patronin,现在确定了两个肌动蛋白交联剂,β-H-谱蛋白和丝胺,和多PDZ蛋白大爆炸。我们发现β-H-Spectrin的组织特异性降解导致顶端-内侧F-肌动蛋白的减少,开枪,Patronin和Big-bang以及伴随的根尖收缩缺陷,但是残留的Patronin仍然足以帮助微管重组。与Patronin和Shot相反,β-H-Spectrin和Bigbang都不需要微管进行定位。β-H-Spectroin是通过与顶-内侧磷酸肌醇结合而募集的。含有PH结构域的β-H-33的过表达取代了内源性β-H-Spectroin并导致强烈的形态发生缺陷。因此,该蛋白质中心需要膜和微管相关成分的协同作用和重合,以使其组装和功能在小管形成过程中维持顶端收缩。
    Coordinated cell shape changes are a major driver of tissue morphogenesis, with apical constriction of epithelial cells leading to tissue bending. We previously identified that interplay between the apical-medial actomyosin, which drives apical constriction, and the underlying longitudinal microtubule array has a key role during tube budding of salivary glands in the Drosophila embryo. At this microtubule-actomyosin interface, a hub of proteins accumulates, and we have shown before that this hub includes the microtubule-actin crosslinker Shot and the microtubule minus-end-binding protein Patronin. Here, we identify two actin-crosslinkers, β-heavy (H)-Spectrin (also known as Karst) and Filamin (also known as Cheerio), and the multi-PDZ-domain protein Big bang as components of the protein hub. We show that tissue-specific degradation of β-H-Spectrin leads to reduction of apical-medial F-actin, Shot, Patronin and Big bang, as well as concomitant defects in apical constriction, but that residual Patronin is still sufficient to assist microtubule reorganisation. We find that, unlike Patronin and Shot, neither β-H-Spectrin nor Big bang require microtubules for their localisation. β-H-Spectrin is instead recruited via binding to apical-medial phosphoinositides, and overexpression of the C-terminal pleckstrin homology domain-containing region of β-H-Spectrin (β-H-33) displaces endogenous β-H-Spectrin and leads to strong morphogenetic defects. This protein hub therefore requires the synergy and coincidence of membrane- and microtubule-associated components for its assembly and function in sustaining apical constriction during tubulogenesis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肌动蛋白皮层的结构决定了应力的产生和传递,在从细胞分裂到迁移的关键事件中。然而,其对肌球蛋白诱导的细胞形状变化的影响尚不清楚.这里,我们重建了一个最小的肌动球蛋白皮质模型,在巨大的单层囊泡中具有分支或线性的F-肌动蛋白结构(GUV,脂质体)。肌球蛋白光激活后,单独的分支或线性F-肌动蛋白结构均不诱导显著的脂质体形状变化。分支的F-肌动蛋白网络形成一个完整的,膜结合\“无滑移边界\”样皮质,减弱肌动球蛋白收缩性。相比之下,线性F-肌动蛋白网络形成一个未整合的“滑移边界”状皮层,肌动蛋白形成而不引起膜变形。值得注意的是,脂质体在分支和线性F-肌动蛋白网络的最佳平衡下经历明显的变形。我们的发现强调了分支F-肌动蛋白在力传递和线性F-肌动蛋白在力产生中产生膜形状变化的关键作用。
    The architecture of the actin cortex determines the generation and transmission of stresses, during key events from cell division to migration. However, its impact on myosin-induced cell shape changes remains unclear. Here, we reconstitute a minimal model of the actomyosin cortex with branched or linear F-actin architecture within giant unilamellar vesicles (GUVs, liposomes). Upon light activation of myosin, neither the branched nor linear F-actin architecture alone induces significant liposome shape changes. The branched F-actin network forms an integrated, membrane-bound \"no-slip boundary\" -like cortex that attenuates actomyosin contractility. By contrast, the linear F-actin network forms an unintegrated \"slip boundary\" -like cortex, where actin asters form without inducing membrane deformations. Notably, liposomes undergo significant deformations at an optimized balance of branched and linear F-actin networks. Our findings highlight the pivotal roles of branched F-actin in force transmission and linear F-actin in force generation to yield membrane shape changes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号