active matter

活性物质
  • 文章类型: Journal Article
    在低雷诺活性流体中观察到湍流,表现出与经典惯性湍流相似的现象学,但性质不同。理解这种新型湍流对维度的依赖性是非平衡物理学中的一个基本挑战。从二维到三维实验测量了细菌湍流的实空间结构和动能谱。湍流显示了三个由两个临界限制高度隔开的状态,由于细菌长度的竞争,涡流的大小和限制高度。同时,动能谱在准2D和3D状态下显示出不同的通用标度定律,独立于细菌活动,长度,和禁闭高度,而缩放指数在临界高度周围分两步过渡。我们开发的水动力学模型很好地捕获了缩放行为,它采用图像系统来表示限制边界的效果。该研究提出了一个框架,用于研究维度对非平衡自组织系统的影响。
    Turbulent flows are observed in low-Reynolds active fluids, which display similar phenomenology to the classical inertial turbulence but are of a different nature. Understanding the dependence of this new type of turbulence on dimensionality is a fundamental challenge in non-equilibrium physics. Real-space structures and kinetic energy spectra of bacterial turbulence are experimentally measured from two to three dimensions. The turbulence shows three regimes separated by two critical confinement heights, resulting from the competition of bacterial length, vortex size and confinement height. Meanwhile, the kinetic energy spectra display distinct universal scaling laws in quasi-2D and 3D regimes, independent of bacterial activity, length, and confinement height, whereas scaling exponents transition in two steps around the critical heights. The scaling behaviors are well captured by the hydrodynamic model we develop, which employs image systems to represent the effects of confining boundaries. The study suggests a framework for investigating the effect of dimensionality on non-equilibrium self-organized systems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:电场驱动的活性颗粒系统中的对称破坏可以通过施加空间均匀的,但是时间上不均匀,交流(AC)信号。无论暴露于锯齿AC信号的粒子类型如何,离子电荷层的不均匀感应极化导致主动推进的主要电流体动力效应,称为不对称场电泳(AFEP)。
    方法:含有三种尺寸乳胶微球的悬浮液,以及Janus和金属涂层颗粒受到不同电压的锯齿交流信号,频率,和时间不对称。通过显微镜进行的颗粒跟踪用于分析其作为关键参数的函数的运动性。
    结果:粒子表现出场共线主动推进,并且AC信号的时间反转导致它们的运动方向的反转。实验速度数据作为场强的函数,频率,和信号不对称性由非对称离子浓差极化模型支持。粒子迁移的方向在低频域中表现出与尺寸相关的交叉。这使得能够实现简单且有效的片上分选的新方法。将AFEP与其他AC运动机制相结合,如感应电荷电泳,允许对粒子运动进行多轴控制,并且可以开发新颖的交流场驱动有源微系统。
    OBJECTIVE: Symmetry breaking in an electric field-driven active particle system can be induced by applying a spatially uniform, but temporally non-uniform, alternating current (AC) signal. Regardless of the type of particles exposed to sawtooth AC signals, the unevenly induced polarization of the ionic charge layer leads to a major electrohydrodynamic effect of active propulsion, termed Asymmetric Field Electrophoresis (AFEP).
    METHODS: Suspensions containing latex microspheres of three sizes, as well as Janus and metal-coated particles were subjected to sawtooth AC signals of varying voltages, frequencies, and time asymmetries. Particle tracking via microscopy was used to analyze their motility as a function of the key parameters.
    RESULTS: The particles exhibit field-colinear active propulsion, and the temporal reversal of the AC signal results in a reversal of their direction of motion. The experimental velocity data as a function of field strength, frequency, and signal asymmetry are supported by models of asymmetric ionic concentration-polarization. The direction of particle migration exhibits a size-dependent crossover in the low frequency domain. This enables new approaches for simple and efficient on-chip sorting. Combining AFEP with other AC motility mechanisms, such as induced-charge electrophoresis, allows multiaxial control of particle motion and could enable development of novel AC field-driven active microsystems.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大细胞通常依赖于细胞质流进行细胞内运输,保持体内平衡,定位蜂窝组件。了解这些流动的机制对于了解细胞功能至关重要,发展过程,和进化适应性。这里,我们专注于一类自组织的细胞质搅拌机制,这是由细胞皮质处细胞骨架元素之间的流体-结构相互作用引起的。从晚期果蝇卵母细胞的流动中汲取灵感,我们提出了一种可分析的活性地毯理论。该模型破译了此类流动的起源和三维时空组织。通过模拟和弱非线性理论的结合,我们建立了流向其全球吸引子的途径:跨细胞的涡旋扭曲器。我们的研究揭示了这种紧急流动的内在对称性,它的低维结构,并说明了复杂的流体-结构相互作用如何与斯托克斯流中的经典解一致。这个框架可以很容易地适应于阐明广泛的自组织,皮层驱动的细胞内流。
    Large cells often rely on cytoplasmic flows for intracellular transport, maintaining homeostasis, and positioning cellular components. Understanding the mechanisms of these flows is essential for gaining insights into cell function, developmental processes, and evolutionary adaptability. Here, we focus on a class of self-organized cytoplasmic stirring mechanisms that result from fluid-structure interactions between cytoskeletal elements at the cell cortex. Drawing inspiration from streaming flows in late-stage fruit fly oocytes, we propose an analytically tractable active carpet theory. This model deciphers the origins and three-dimensional spatiotemporal organization of such flows. Through a combination of simulations and weakly nonlinear theory, we establish the pathway of the streaming flow to its global attractor: a cell-spanning vortical twister. Our study reveals the inherent symmetries of this emergent flow, its low-dimensional structure, and illustrates how complex fluid-structure interaction aligns with classical solutions in Stokes flow. This framework can be easily adapted to elucidate a broad spectrum of self-organized, cortex-driven intracellular flows.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动球蛋白皮质是通过细胞骨架重塑产生驱动形状变化的力的活性材料。细胞分裂是重要的细胞分裂事件,在此期间皮质肌动球蛋白环关闭以分离两个子细胞。我们的主动凝胶理论预测,由生化振荡器控制并经历机械应变的肌动球蛋白系统将表现出复杂的时空行为。为了测试体内活性材料是否表现出时空复杂的动力学,我们以前所未有的时间分辨率对秀丽隐杆线虫胚胎进行成像,并发现细胞动力学皮质部分经历了加速和减速的周期性阶段。收缩振荡表现出一系列周期性,包括那些比RhoA脉冲的时间尺度长得多的周期,胞质分裂比任何其他生物学背景都短。在体内或计算机上修改机械反馈表明,收缩振荡的时间随机械反馈的强度而延长。在速度振荡周期较长的情况下,会发生快速局部振铃,可能是由于局部应力增加,因此,机械反馈。在材料周转率很高的地方也会发生快速侵入,在体内和硅。我们建议在脉冲RhoA活性引发的下游,机械反馈,包括但不限于材料平流,将收缩性的时间尺度扩展到生化输入的时间尺度之外,因此,使其对激活的波动具有鲁棒性。尽管需要从压实中恢复细胞骨架重塑,但收缩性的周向传播可能允许持续的收缩性。因此,比如生化反馈,机械反馈提供活性材料的响应性和鲁棒性。
    The actomyosin cortex is an active material that generates force to drive shape changes via cytoskeletal remodeling. Cytokinesis is the essential cell division event during which a cortical actomyosin ring closes to separate two daughter cells. Our active gel theory predicted that actomyosin systems controlled by a biochemical oscillator and experiencing mechanical strain would exhibit complex spatiotemporal behavior. To test whether active materials in vivo exhibit spatiotemporally complex kinetics, we imaged the C. elegans embryo with unprecedented temporal resolution and discovered that sections of the cytokinetic cortex undergo periodic phases of acceleration and deceleration. Contractile oscillations exhibited a range of periodicities, including those much longer periods than the timescale of RhoA pulses, which was shorter in cytokinesis than in any other biological context. Modifying mechanical feedback in vivo or in silico revealed that the period of contractile oscillation is prolonged as a function of the intensity of mechanical feedback. Fast local ring ingression occurs where speed oscillations have long periods, likely due to increased local stresses and, therefore, mechanical feedback. Fast ingression also occurs where material turnover is high, in vivo and in silico. We propose that downstream of initiation by pulsed RhoA activity, mechanical feedback, including but not limited to material advection, extends the timescale of contractility beyond that of biochemical input and, therefore, makes it robust to fluctuations in activation. Circumferential propagation of contractility likely allows for sustained contractility despite cytoskeletal remodeling necessary to recover from compaction. Thus, like biochemical feedback, mechanical feedback affords active materials responsiveness and robustness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    与大多数其他类型的微型机器人相比,气泡推进的微型机器人具有相对快速移动的优势,这使得它们非常适合于微操作或流动运动等应用,但是它们的高速也对精确控制它们的运动提出了挑战。这项研究提出了使用视觉反馈和均匀磁场转向来限制微型机器人的移动方向的自动控制。闭环控制机制的实现确保了沿规定轨迹的精确自主导航。实验结果表明,该方法取得了令人满意的跟踪性能,平均误差为6。直径为24μm的微型机器人为7μm。
    Bubble-propelled microrobots have an advantage of relatively swift movement compared to most other types of microrobots, which makes them well suited for applications such as micromanipulation or movement in flows, but their high speed also poses challenges in precisely controlling their motion. This study proposes automated control of the microrobots using visual feedback and steering with uniform magnetic fields to constrain the microrobot\'s moving direction. The implementation of a closed-loop control mechanism ensures precise autonomous navigation along prescribed trajectories. Experimental results demonstrate that this approach achieves satisfactory tracking performance, with an average error of 6. 7 μm for a microrobot with a diameter of 24 μm.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    一系列运动蛋白在建立染色体结构时消耗化学能。这里,我们探索了理想聚合物链的结构如何受到两类电机的影响。我们称之为“游泳马达”的第一类作用是推动染色质纤维穿过三维空间。它们代表马达如RNA聚合酶的漫画。以前,它们通常是通过在链的布朗扩散上添加持续流动来描述的。第二类电机,我们称之为“抓斗马达”漫画环挤压过程,其中相距一定距离的染色质纤维片段被聚集在一起。我们使用结合运动活动的多体主方程的自洽变分声子近似来分析这些模型。我们表明,游泳电机是否导致收缩或膨胀取决于电机的敏感性,也就是说,他们的活动如何取决于他们必须施加的力量。与游泳运动相反,抓斗运动会导致远距离相关性,类似于最初为分形球建议的相关性,并且与通过对相间染色体上的Hi-C数据的能量景观分析推断的有效相互作用相一致。
    An array of motor proteins consumes chemical energy in setting up the architectures of chromosomes. Here, we explore how the structure of ideal polymer chains is influenced by two classes of motors. The first class which we call \"swimming motors\" acts to propel the chromatin fiber through three-dimensional space. They represent a caricature of motors such as RNA polymerases. Previously, they have often been described by adding a persistent flow onto Brownian diffusion of the chain. The second class of motors, which we call \"grappling motors\" caricatures the loop extrusion processes in which segments of chromatin fibers some distance apart are brought together. We analyze these models using a self-consistent variational phonon approximation to a many-body Master equation incorporating motor activities. We show that whether the swimming motors lead to contraction or expansion depends on the susceptibility of the motors, that is, how their activity depends on the forces they must exert. Grappling motors in contrast to swimming motors lead to long-ranged correlations that resemble those first suggested for fractal globules and that are consistent with the effective interactions inferred by energy landscape analyses of Hi-C data on the interphase chromosome.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    标准深度学习算法需要区分大型非线性网络,一个缓慢且耗电的过程。电子对比本地学习网络(CLLN)提供潜在的快速,高效,以及用于模拟机器学习的容错硬件,但是现有的实现是线性的,严重限制了他们的能力。这些系统与人工神经网络以及大脑有很大不同,因此,结合非线性元素的可行性和实用性尚未得到探索。这里,我们介绍了一种非线性CLLN-一种由基于晶体管的自调整非线性电阻元件组成的模拟电子网络。我们证明了系统学习线性系统中无法实现的任务,包括异或(异或)和非线性回归,没有电脑。我们发现我们的分散系统按顺序减少了训练误差的模式(平均,斜坡,曲率),类似于人工神经网络中的谱偏差。电路对损坏很坚固,可在几秒钟内重新训练,并在微秒内执行学习的任务,同时仅耗散每个晶体管上的皮焦耳能量。这表明快速的巨大潜力,传感器等边缘系统中的低功耗计算,机器人控制器,和医疗设备,以及大规模执行和研究紧急学习的可制造性。
    Standard deep learning algorithms require differentiating large nonlinear networks, a process that is slow and power-hungry. Electronic contrastive local learning networks (CLLNs) offer potentially fast, efficient, and fault-tolerant hardware for analog machine learning, but existing implementations are linear, severely limiting their capabilities. These systems differ significantly from artificial neural networks as well as the brain, so the feasibility and utility of incorporating nonlinear elements have not been explored. Here, we introduce a nonlinear CLLN-an analog electronic network made of self-adjusting nonlinear resistive elements based on transistors. We demonstrate that the system learns tasks unachievable in linear systems, including XOR (exclusive or) and nonlinear regression, without a computer. We find our decentralized system reduces modes of training error in order (mean, slope, curvature), similar to spectral bias in artificial neural networks. The circuitry is robust to damage, retrainable in seconds, and performs learned tasks in microseconds while dissipating only picojoules of energy across each transistor. This suggests enormous potential for fast, low-power computing in edge systems like sensors, robotic controllers, and medical devices, as well as manufacturability at scale for performing and studying emergent learning.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    由不断远离热平衡的成分组成的活性流体可以支持自发流,并且可以被设计为具有非常规的传输特性。这里,我们报告了在对齐圆圈游泳者的计算机模拟中出现(元)稳定的游带。这些波段不同于极群,通过耦合阶段与质量传输,诱导具有垂直于传播方向的分量的块状颗粒电流,从而产生集体霍尔(或马格努斯)效应。行进带需要足够小的轨道,并且对于较大的轨道半径,会经历不连续过渡到具有瞬态极簇的同步状态。在最小流体动力学理论中,我们表明,这些带可以理解为非色散孤子解,充分说明了数值观察到的性质。
    Active fluids composed of constituents that are constantly driven away from thermal equilibrium can support spontaneous currents and can be engineered to have unconventional transport properties. Here, we report the emergence of (meta)stable traveling bands in computer simulations of aligning circle swimmers. These bands are different from polar flocks and, through coupling phase with mass transport, induce a bulk particle current with a component perpendicular to the propagation direction, thus giving rise to a collective Hall (or Magnus) effect. Traveling bands require sufficiently small orbits and undergo a discontinuous transition into a synchronized state with transient polar clusters for large orbital radii. Within a minimal hydrodynamic theory, we show that the bands can be understood as nondispersive soliton solutions fully accounting for the numerically observed properties.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    生物经常游过密度分层的液体。这里,我们研究了活跃粒子在流体密度梯度中游动的动力学,并报告了这些梯度(密度轴)导致的出租车的理论证据。具体来说,我们计算了密度分层对无力和无扭矩球形蠕动器动力学的影响,并表明密度梯度会引起重新定向,从而倾向于根据游泳步态使游泳与梯度平行或正交。特别是,通过在前部产生推力来推进的游泳者(拔具)旋转以平行于梯度游泳,因此显示(正或负)密度轴,而通过在背部产生推力来推动的游泳者(推动器)旋转以垂直于梯度游泳。这项工作可能有助于了解海洋生物在海洋中的运动,或者通过调节密度梯度来分类或组织活性颗粒的悬浮液。
    Organisms often swim through density-stratified fluids. Here, we investigate the dynamics of active particles swimming in fluid density gradients and report theoretical evidence of taxis as a result of these gradients (densitaxis). Specifically, we calculate the effect of density stratification on the dynamics of a force- and torque-free spherical squirmer and show that density gradients induce reorientation that tends to align swimming either parallel or normal to the gradient depending on the swimming gait. In particular, swimmers that propel by generating thrust in the front (pullers) rotate to swim parallel to gradients and hence display (positive or negative) densitaxis, while swimmers that propel by generating thrust in the back (pushers) rotate to swim normal to the gradients. This work could be useful to understand the motion of marine organisms in ocean or be leveraged to sort or organize a suspension of active particles by modulating density gradients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    我们分析了运行和滚动模型中的熵产生。在一个空间维度的Fokker-Planck方程框架中提出了一般的形式主义之后,我们在简单的物理情况下(自由运行和滚动粒子和谐波限制)得出一些已知的确切结果。然后,我们将计算扩展到各向异性运动的情况(左右定向粒子的速度和翻滚率不同),获得熵生产率的精确表达式。最后,我们讨论了由空间相关参数描述的异构运行和翻转运动的一般情况,并将分析扩展到d维运动的情况。
    We analyze the entropy production in run-and-tumble models. After presenting the general formalism in the framework of the Fokker-Planck equations in one space dimension, we derive some known exact results in simple physical situations (free run-and-tumble particles and harmonic confinement). We then extend the calculation to the case of anisotropic motion (different speeds and tumbling rates for right- and left-oriented particles), obtaining exact expressions of the entropy production rate. We conclude by discussing the general case of heterogeneous run-and-tumble motion described by space-dependent parameters and extending the analysis to the case of d-dimensional motions.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号