ZASP

ZASP
  • 文章类型: Journal Article
    肌原纤维是特定于肌肉的长细胞内电缆,主要由肌动蛋白和肌球蛋白丝组成。肌动蛋白和肌球蛋白细丝被组织成称为肌节的重复单元,形成肌原纤维。肌肉收缩是通过同时缩短肌节来实现的,这要求所有的肉瘤大小相同。肌肉有多种方法来确保肌节均匀性。我们先前表明Zasp蛋白的受控寡聚化设定了肌原纤维的直径。在这里,我们在Z盘寻找Zasp结合蛋白,以鉴定协调肌原纤维生长和组装的其他蛋白质。我们发现酮戊二酸脱氢酶复合物的E1亚基位于Z盘和线粒体,并被Zasp52招募到Z光盘。氧戊二酸脱氢酶复合物的三个亚基是肌原纤维形成所必需的。使用超分辨率显微镜,我们揭示了Z光盘上建筑群的整体组织。代谢组学确定影响蛋白质合成的氨基酸失衡是肌原纤维缺陷的可能原因,这得到了OGDH依赖性核糖体在Z盘的定位的支持。
    Myofibrils are long intracellular cables specific to muscles, composed mainly of actin and myosin filaments. The actin and myosin filaments are organized into repeated units called sarcomeres, which form the myofibrils. Muscle contraction is achieved by the simultaneous shortening of sarcomeres, which requires all sarcomeres to be the same size. Muscles have a variety of ways to ensure sarcomere homogeneity. We have previously shown that the controlled oligomerization of Zasp proteins sets the diameter of the myofibril. Here, we looked for Zasp-binding proteins at the Z-disc to identify additional proteins coordinating myofibril growth and assembly. We found that the E1 subunit of the oxoglutarate dehydrogenase complex localizes to both the Z-disc and the mitochondria, and is recruited to the Z-disc by Zasp52. The three subunits of the oxoglutarate dehydrogenase complex are required for myofibril formation. Using super-resolution microscopy, we revealed the overall organization of the complex at the Z-disc. Metabolomics identified an amino acid imbalance affecting protein synthesis as a possible cause of myofibril defects, which is supported by OGDH-dependent localization of ribosomes at the Z-disc.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    One of the most intriguing features of multicellular animals is their ability to move. On a cellular level, this is accomplished by the rearrangement and reorganization of the cytoskeleton, a dynamic network of filamentous proteins which provides stability and structure in a stationary context, but also facilitates directed movement by contracting. The ALP/Enigma family proteins are a diverse group of docking proteins found in numerous cellular milieus and facilitate these processes among others. In vertebrates, they are characterized by having a PDZ domain in combination with one or three LIM domains. The family is comprised of CLP-36 (PDLIM1), Mystique (PDLIM2), ALP (PDLIM3), RIL (PDLIM4), ENH (PDLIM5), ZASP (PDLIM6), and Enigma (PDLIM7). In this review, we will outline the evolution and function of their protein domains which confers their versatility. Additionally, we highlight their role in different cellular environments, focusing specifically on recent advances in muscle research using Drosophila as a model organism. Finally, we show the relevance of this protein family to human myopathies and the development of muscle-related diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Case Reports
    Mutations in the LDB3 gene have been identified in patients with Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)-related myofibrillar myopathy (ZASP-MFM) characterized by late-onset distal myopathy with signs of cardiomyopathy and neuropathy. We describe an autosomal dominant inherited pedigree with ZASP-MFM that is in line with the typical phenotype of distal myopathy without cardiomyopathy and neuropathy, while mild asymmetrical muscle atrophy can be observed in some affected members. Muscle MRI revealed considerable fatty degeneration involved in the posterior compartment of thigh and lower leg, but relatively preserved in rectus femoris, sartorius, gracilis, adductor longus and biceps femoris breve muscles in the later stage. In addition, fatty infiltration of medial gastrocnemius muscle can be initiated as early as in the third decade in asymptomatic individuals. Myopathological features showed sarcoplasmic accumulation of multiple protein deposits and electron dense filamentous bundle aggregates. A novel heterozygous missense mutation (p.N155H) in a highly conserved PDZ-like motif of ZASP was identified. The results indicate that typical ZASP-MFM presenting with late-onset distal myopathy is commonly associated with mutations in PDZ-like motif of ZASP. The development of fatty degeneration is consistent with the typical pattern of ZASP-MFM, and the initial fatty infiltration might be started from medial gastrocnemius muscle. Our study expands the clinical and mutational spectrum of ZASP-MFM.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8-11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Evaluation Study
    Extensive proteolysis takes place during the processing of dry-cured ham due to the action of muscle peptidases. The aim of this work was to study the degradation of LIM domain binding protein 3 (LDB3), which is located at the Z-lines of the sarcomere, at different times during the Spanish dry-cured ham processing (2, 3.5, 5, 6.5, and 9 months). A total of 107 peptides have been identified by mass spectrometry, most of them generated from the first region of the protein sequence (position 1-90) providing evidence for the complexity and variability of proteolytic reactions throughout the whole process of dry-curing. Methionine oxidation has been observed in several peptides by the end of the process. The potential of some of the identified peptides to be used as biomarkers of dry-cured ham processing has also been considered.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    在发育和生长过程中稳定组织结构对于保持结构完整性至关重要。由于它的收缩性质,肌肉特别容易受到生理压力,并具有多种机制来保持结构完整性。果蝇肌肉LIM蛋白(MLP),Mlp84B,参与肌肉维护,然而,其确切的作用机制仍然存在争议。通过候选人的方式,我们确定α-肌动蛋白是一种与Mlp84B起作用以确保肌肉完整性的蛋白质。α-肌动蛋白RNAi动物主要以蛹的形式死亡,和Mlp84BRNAi动物是成年存活的。Mlp84B和α-肌动蛋白的RNAi敲低一起产生协同的早期幼虫致死性和Z线结构的不稳定。我们使用传统的功能缺失等位基因和单基因RNAi的组合来概括这些表型。我们观察到Mlp84B在没有核α-肌动蛋白的情况下诱导肌动蛋白环的形成。表明Mlp84B具有内在的肌动蛋白交联活性,可以补充肌动蛋白丝锚定位点的α-肌动蛋白交联活性。这些结果揭示了MLP稳定肌肉的分子机制,并暗示肌动蛋白交联减少是MLP相关心肌病的主要不稳定缺陷。我们的数据支持一个模型,其中α-肌动蛋白和Mlp84B在肌动蛋白丝锚定位点具有重要且重叠的功能,以保持肌肉结构和功能。
    Stabilization of tissue architecture during development and growth is essential to maintain structural integrity. Because of its contractile nature, muscle is especially susceptible to physiological stresses, and has multiple mechanisms to maintain structural integrity. The Drosophila melanogaster Muscle LIM Protein (MLP), Mlp84B, participates in muscle maintenance, yet its precise mechanism of action is still controversial. Through a candidate approach, we identified α-actinin as a protein that functions with Mlp84B to ensure muscle integrity. α-actinin RNAi animals die primarily as pupae, and Mlp84B RNAi animals are adult viable. RNAi knockdown of Mlp84B and α-actinin together produces synergistic early larval lethality and destabilization of Z-line structures. We recapitulated these phenotypes using combinations of traditional loss-of-function alleles and single-gene RNAi. We observe that Mlp84B induces the formation of actin loops in muscle cell nuclei in the absence of nuclear α-actinin, suggesting Mlp84B has intrinsic actin cross-linking activity, which may complement α-actinin cross-linking activity at sites of actin filament anchorage. These results reveal a molecular mechanism for MLP stabilization of muscle and implicate reduced actin crosslinking as the primary destabilizing defect in MLP-associated cardiomyopathies. Our data support a model in which α-actinin and Mlp84B have important and overlapping functions at sites of actin filament anchorage to preserve muscle structure and function.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

公众号