Yeast gene manipulation

酵母基因操作
  • 文章类型: Journal Article
    细胞质动力蛋白,最大和最复杂的细胞骨架运动蛋白,为许多细胞内货物向微管(MT)的负端移动提供动力。尽管它在真核细胞中起着重要作用,动力蛋白的分子机制,其亚基和辅助蛋白的调节功能,人类疾病突变对动力蛋白力产生的影响仍不清楚。最近的工作结合诱变,单分子荧光,和基于光学镊子的力测量为动力蛋白的多个AAAATPase结构域如何调节动力蛋白对MT的附着提供了有价值的见解。这里,我们描述了力依赖性动力蛋白-MT脱离率测量的详细方案.我们为尾部截短的单头酿酒酵母动力蛋白的表达和纯化提供了更新和优化的方案,对于极性标记的MT聚合,以及将MT非共价连接到覆盖玻璃表面,以测量动力蛋白-MT分离力。
    Cytoplasmic dynein, the largest and most intricate cytoskeletal motor protein, powers the movement of numerous intracellular cargos toward the minus ends of microtubules (MT). Despite its essential roles in eukaryotic cells, dynein\'s molecular mechanism, the regulatory functions of its subunits and accessory proteins, and the consequences of human disease mutations on dynein force generation remain largely unclear. Recent work combining mutagenesis, single-molecule fluorescence, and optical tweezers-based force measurement have provided valuable insights into how dynein\'s multiple AAA+ ATPase domains regulate dynein\'s attachment to MTs. Here, we describe detailed protocols for the measurements of the force-dependent dynein-MT detachment rates. We provide updated and optimized protocols for the expression and purification of a tail-truncated single-headed Saccharomyces cerevisiae dynein, for polarity-marked MT polymerization, and for the non-covalent attachment of MTs to cover glass surfaces for the measurement of dynein-MT detachment forces.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    细胞质动力蛋白是最大和最复杂的细胞骨架运动蛋白。它负责各种各样的生物学功能,从细胞器和mRNA的运输到神经元迁移过程中细胞核的运动以及细胞分裂过程中有丝分裂纺锤体的形成和定位。尽管它的巨型尺寸和复杂的设计,最近成功的重组表达动力蛋白重链,通过结合结构功能和单分子研究,促进了我们对动力蛋白分子机制的理解。单分子荧光测定法提供了详细的见解,了解动力蛋白在没有负载的情况下如何沿着其微管轨道前进,而光学镊子已经对动力蛋白的力产生和失速行为产生了见解。这里,使用酿酒酵母表达系统,我们提供了用于产生动力蛋白突变体以及用于表达和纯化突变和/或标记的蛋白质的改进方案。为了促进单分子荧光和光学捕获测定,我们进一步描述更新,易于使用的协议,用于将微管附着到盖玻片表面。提出的方案以及最近解决的动力蛋白运动结构域的晶体结构将进一步简化和加速假设驱动的诱变和动力蛋白的结构功能研究。
    Cytoplasmic dynein is the largest and most intricate cytoskeletal motor protein. It is responsible for a vast array of biological functions, ranging from the transport of organelles and mRNAs to the movement of nuclei during neuronal migration and the formation and positioning of the mitotic spindle during cell division. Despite its megadalton size and its complex design, recent success with the recombinant expression of the dynein heavy chain has advanced our understanding of dynein\'s molecular mechanism through the combination of structure-function and single-molecule studies. Single-molecule fluorescence assays have provided detailed insights into how dynein advances along its microtubule track in the absence of load, while optical tweezers have yielded insights into the force generation and stalling behavior of dynein. Here, using the S. cerevisiae expression system, we provide improved protocols for the generation of dynein mutants and for the expression and purification of the mutated and/or tagged proteins. To facilitate single-molecule fluorescence and optical trapping assays, we further describe updated, easy-to-use protocols for attaching microtubules to coverslip surfaces. The presented protocols together with the recently solved crystal structures of the dynein motor domain will further simplify and accelerate hypothesis-driven mutagenesis and structure-function studies on dynein.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号