Wnt inhibitor

  • 文章类型: Journal Article
    MET的扩增是EGFR突变型非小细胞肺癌(NSCLC)对靶向治疗的获得性耐药的主要原因。只能被MET抑制剂的部分疗效暂时抑制。这项研究表明,由于扩增的MET在Wnt/β-catenin信号通路中触发了强大的正反馈回路,因此MET抑制剂的功效出乎意料地有限。即使MET途径再次被抑制,也允许最佳功能。为了检验这一推测并特异性靶向Wnt/β-catenin通路,一种巧妙设计的Wnt缩合前药称为WntSI是使用液液相分离(LLPS)驱动的可逆超分子自组装开发的。该过程涉及MET/pH响应肽(Tyr-Pep)和称为CA的有效Wnt抑制剂。在细胞中过表达的MET识别和磷酸化Tyr-Pep时,它破坏了LLPS倾向,促进了WntSI的解体。因此,这使得它能够抑制β-连环蛋白介导的致癌作用,在细胞系来源和患者来源的肿瘤异种移植(PDX)小鼠模型中,有效克服了由MET扩增引起的对EGFR-TKIs的获得性耐药性,同时保持了出色的生物安全性。这种有效的策略不仅选择性地抑制了Wnt/β-catenin信号通路,但也是通过生物响应性LLPS开发前药的创新范例。
    The amplification of MET is a major cause of acquired resistance to targeted therapy in EGFR-mutant non-small-cell lung cancer (NSCLC), only to be temporarily restrained by the partial efficacy of MET inhibitors. This study reveals that the MET inhibitor has unexpectedly limited efficacy due to amplified MET triggering a strong positive feedback loop in the Wnt/β-catenin signaling pathway, allowing optimal functionality even when the MET pathway is suppressed again. To test this conjecture and specifically target the Wnt/β-catenin pathway, a cleverly designed Wnt condensative pro drug called WntSI is developed using reversible supramolecular self-assembly driven by liquidliquid phase separation (LLPS). This process involves a MET/pH-responsive peptide (Tyr-Pep) and a potent Wnt inhibitor known as CA. Upon recognition and phosphorylation of Tyr-Pep by over expressed MET in cells, it disrupts LLPS propensity and facilitates the disintegration of WntSI. Consequently,this enables it to suppress the carcinogenic effect mediated by β-catenin,effectively overcoming acquired resistance to EGFR-TKIs caused by MET amplification in both cell line-derived and patient-derived tumor xenograft (PDX) mouse models while maintaining exceptional biosecurity. This effective strategy not only suppresses the Wnt/β-catenin signaling pathway selectively, but also serves as an innovative example for pro-drug development through biologically responsive LLPS.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    硬化蛋白由骨细胞分泌,与Wnt共受体Lrp5/6结合,并影响Wnt配体与Lrp5/6之间的相互作用,从而抑制Wnt/β-catenin信号并抑制骨形成。硬化蛋白通过充当骨形成的负调节剂,在保存骨量中起重要作用。硬化蛋白缺乏会导致硬化,其特征在于在人和小鼠中具有增强的骨形成的过量骨量。硬化蛋白的表达受多种因子的正向和负向调控,也控制骨代谢。根据最近和以前的发现,本文介绍和讨论了硬化蛋白表达的正、负调节因子及其作用。包括我们的研究.
    Sclerostin is secreted from osteocytes, binds to the Wnt co-receptor Lrp5/6, and affects the interaction between Wnt ligands and Lrp5/6, which inhibits Wnt/β-catenin signals and suppresses bone formation. Sclerostin plays an important role in the preservation of bone mass by functioning as a negative regulator of bone formation. A sclerostin deficiency causes sclerosteosis, which is characterized by an excess bone mass with enhanced bone formation in humans and mice. The expression of sclerostin is positively and negatively regulated by many factors, which also govern bone metabolism. Positive and negative regulators of sclerostin expression and their effects are introduced and discussed herein based on recent and previous findings, including our research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    In canonical Wnt/β-catenin signaling pathway, β-catenin/TCF4 (T-cell factor 4) interaction plays an important role in the pathogenesis and development of non-small cell lung cancer (NSCLC), and it is tightly associated with the proliferation, chemoresistance, recurrence and metastasis of NSCLC. Therefore, suppressing β-catenin/TCF4 interaction in Wnt/β-catenin signaling pathway would be a new therapeutic avenue against NSCLC metastasis. In this study, considering the principle of enzyme-linked immunosorbent assay (ELISA), an optimized high-throughput screening (HTS) assay was developed for the discovery of β-catenin/TCF4 interaction antagonists. Subsequently, this ELISA-like screening assay was performed using 2 μg/mL GST-TCF4 βBD and 0.5 μg/mL β-catenin, then a high Z\' factor of 0.83 was achieved. A pilot screening of a natural product library using this ELISA-like screening assay identified plumbagin as a potential β-catenin/TCF4 interaction antagonist. Plumbagin remarkably inhibited the proliferation of A549, H1299, MCF7 and SW480 cell lines. More importantly, plumbagin significantly suppressed the β-catenin-responsive transcription in TOPFlash assay. In short, this newly developed ELISA-like screening assay will be vital for the rapid screening of novel Wnt inhibitors targeting β-catenin/TCF4 interaction, and this interaction is a potential anticancer target of plumbagin in vitro.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Aberrant activation of the Wnt/β-catenin signaling pathway is prominent in the development and metastasis of non-small cell lung cancer (NSCLC). Highly effective inhibition of this pathway highlights a therapeutic avenue against NSCLC. Moreover, β-catenin/LEF1 interaction regulates β-catenin nuclear transport as well as the transcriptions of the key oncogenes in Wnt/β-catenin signaling pathway. Therefore, interruption of this interaction would be a promising therapeutic strategy for NSCLC metastasis. To date, no economical and rapid high-throughput screening (HTS) assay has been reported for the discovery of β-catenin/LEF1 interaction inhibitors. In this study, we developed a novel fluorescence polarization (FP)-based HTS assay to identify β-catenin/LEF1 interaction inhibitors. The FITC-LEF1 sequence, incubation time, temperature, and DMSO resistance were optimized, and then a high Z\' factor of 0.77 was achieved. A pilot screening of a natural product library via this established FP screening assay identified sanguinarine analogues as potential β-catenin/LEF1 interaction inhibitors. GST pull-down and surface plasmon resonance (SPR) assay demonstrated that β-catenin/LEF1 interaction is a potential anticancer target of sanguinarine in vitro. This newly developed FP screening assay will be vital for the rapid discovery of novel Wnt inhibitors targeting β-catenin/LEF1 interaction.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    Plant secondary metabolites have been seen as alternatives to seeking new medicines for treating various diseases. Phytochemical scientists remain hopeful that compounds isolated from natural sources could help alleviate the leading problem in oncology-the lung malignancy that kills an estimated two million people annually. In the present study, we characterized a medicinal compound benzophenanthridine alkaloid, called chelerythrine chloride for its anti-tumorigenic activities. Cell viability assays confirmed its cytotoxicity and anti-proliferative activity in non-small cell lung carcinoma (NSCLC) cell lines. Immunofluorescence staining of β-catenin revealed that there was a reduction of nuclear content as well as overall cellular content of β-catenin after treating NCI-H1703 with chelerythrine chloride. In functional characterizations, we observed favorable inhibitory activities of chelerythrine chloride in cancer stem cell (CSC) properties, which include soft agar colony-forming, migration, invasion, and spheroid forming abilities. Interesting observations in chelerythrine chloride treatment noted that its action abides to certain concentration-specific-targeting behavior in modulating β-catenin expression and apoptotic cell death. The downregulation of β-catenin implicates the downregulation of CSC transcription factors like SOX2 and MYC. In conclusion, chelerythrine chloride has the potential to mitigate cancer growth due to inhibitory actions toward the tumorigenic activity of CSC in lung cancer and it can be flexibly adjusted according to concentration to modulate specific targeting in different cell lines.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    The Wnt signaling pathway is involved in tumorigenesis and various stages of tumor progression, including the epithelial-mesenchymal transition, metastasis, and drug resistance. Many efforts have been made to develop drugs targeting this pathway. CGX1321 is a porcupine inhibitor that can effectively block Wnt ligand synthesis and is currently undergoing clinical trials. However, drugs targeting the Wnt pathway may frequently cause adverse events in normal tissues, such as the intestine and skin. Formulation of the drug inside liposomes could enable preferential drug delivery to solid tumor tissues and limit drug exposure in normal organs. We developed a strategy to stably encapsulate CGX1321 inside liposomes with minimal drug releases in circulation. The liposomal drugs were shown to interfere with the aberrant Wnt signaling specifically in tumor tissues, resulting in focused effects on LGR5+ CSCs (cancer stem cells), while sparing other cells from significant cytotoxicity. We showed it is feasible to use such a CSC elimination approach to treat malignant cancers prone to rapid progression using a LoVo tumor model as well as a GA007 patient derived xenograft (PDX) model. Nano drug delivery systems may be required for precision medicine in cancer therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    胚细胞的分离和多能外胚层的出现标志着哺乳动物胚胎中胚泡形成的最后阶段。在牛胚胎中,已经部分研究了下胚细胞的形成,证据表明,MEK信号在该谱系的分离中起着有限的作用。在这里,我们使用NANOG和SOX17的免疫荧光分析作为上胚细胞和下胚细胞的读数,探索了牛胚胎谱系分离过程中不同信号通路的作用。分别。
    我们发现SOX17在16-32细胞期胚胎中开始表达,而NANOG首先从8细胞阶段检测到。SOX17首先与NANOG共表达,但是这些标记在胚泡晚期变得相互排斥。通过评估NANOG/SOX17的表达动力学,我们表明抑制MEK信号可以消除牛胚泡中的SOX17表达,不改变NANOG表达。WNT的调制,当与ERK抑制剂组合使用时,PKC和LIF不影响上皮母细胞中的NANOG表达。
    这项研究表明,SOX17可以用作牛的低胚细胞的可靠早期标记,并根据其表达谱,我们表明低胚细胞在第7天的胚泡中分离。此外,使用1μM的PD0325901消除SOX17表达,而不影响上胚中的NANOG群体。WNT的调制,当与ERK抑制剂联合使用时,PKC和LIF不足以支持上母细胞中NANOG表达增强,表明应检查其他信号通路以确定其在表皮母细胞扩张中的潜在作用。
    The segregation of the hypoblast and the emergence of the pluripotent epiblast mark the final stages of blastocyst formation in mammalian embryos. In bovine embryos the formation of the hypoblast has been partially studied, and evidence shows that MEK signalling plays a limited role in the segregation of this lineage. Here we explored the role of different signalling pathways during lineage segregation in the bovine embryo using immunofluorescence analysis of NANOG and SOX17 as readouts of epiblast and hypoblast, respectively.
    We show that SOX17 starts to be expressed in 16-32-cell stage embryos, whereas NANOG is first detected from 8-cell stage. SOX17 is first co-expressed with NANOG, but these markers become mutually exclusive by the late blastocyst stage. By assessing the expression kinetics of NANOG/SOX17 we show that inhibition of MEK signalling can eliminate SOX17 expression in bovine blastocysts, without altering NANOG expression. Modulation of WNT, PKC and LIF did not affect NANOG expression in the epiblast when used in combination with the ERK inhibitor.
    This study shows that SOX17 can be used as a reliable early marker of hypoblast in the bovine, and based on its expression profile we show that the hypoblast segregates in day 7 blastocysts. Furthermore, SOX17 expression is abolished using 1 μM of PD0325901, without affecting the NANOG population in the epiblast. Modulation of WNT, PKC and LIF are not sufficient to support enhanced NANOG expression in the epiblast when combined with ERK inhibitor, indicating that additional signalling pathways should be examined to determine their potential roles in epiblast expansion.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Wnt signaling is important for both skeletal development and bone disease, with Wnt inhibitory factors playing critical roles in bone metabolism. SHISA3 blocks the maturation and transportation of Frizzled receptors to the cell surface, thereby inhibiting the Wnt/β-catenin signaling pathway in lung cancer. However, the function of Shisa3 in bone biology remains uninvestigated. This study found that Shisa3 was strongly expressed in the calvarial bones of mice, especially in osteoblasts. In addition, adenovirus-mediated gene transfer of murine Shisa3 significantly inhibited Wnt3a-induced nuclear translocation of β-catenin and mRNA expression of the Wnt target gene Axin2. In bone phenotype assessments of Shisa3 knockout (Shisa3 KO) mice, micro-computed tomography, mRNA expressions of osteoblast markers, and skeletal preparations all displayed no significant differences compared with Shisa3 wild-type mice. mRNA expression analysis of canonical Wnt signaling target genes (Axin2, Lef1, Dkk1, and Tnfrsf11b) in calvarial bones at P0.5 also revealed no significant findings. In Axin2Cre/ERT2 knock-in mice, the number of Axin2-expressing cells in the calvariae of Shisa3 KO and control mice were comparable. Thus, there appears to be a redundancy in the function of Shisa3 in bone development, likely with other Shisa family members.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    There are intense interests in discovering proregenerative medicine leads that can promote cardiac differentiation and regeneration, as well as repair damaged heart tissues. We have combined zebrafish embryo-based screens with cardiomyogenesis assays to discover selective small molecules that modulate heart development and regeneration with minimal adverse effects. Two related compounds with novel structures, named as Cardiomogen 1 and 2 (CDMG1 and CDMG2), were identified for their capacity to promote myocardial hyperplasia through expansion of the cardiac progenitor cell population. We find that Cardiomogen acts as a Wnt inhibitor by targeting β-catenin and reducing Tcf/Lef-mediated transcription in cultured cells. CDMG treatment of amputated zebrafish hearts reduces nuclear β-catenin in injured heart tissue, increases cardiomyocyte (CM) proliferation, and expedites wound healing, thus accelerating cardiac muscle regeneration. Importantly, Cardiomogen can alleviate the functional deterioration of mammalian hearts after myocardial infarction. Injured hearts exposed to CDMG1 display increased newly formed CMs and reduced fibrotic scar tissue, which are in part attributable to the β-catenin reduction. Our findings indicate Cardiomogen as a Wnt inhibitor in enhancing injury-induced CM proliferation and heart regeneration, highlighting the values of embryo-based small molecule screens in discovery of effective and safe medicine leads.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    Review current understanding of both canonical and non-canonical Wnt signaling in cancer and provide updated knowledge in current clinical trials of Wnt signaling drugs.
    Important roles of both canonical and non-canonical Wnt signaling in cancer have been increasingly recognized. Recent clinical trials of several Wnt-signaling drugs have showed promising outcomes. In addition, some drugs that were originally approved for the treatment of other diseases have been recently found to block Wnt signaling, highlighting their potential to treat Wnt-dependent cancer. Dysfunction of Wnt signaling is implicated in cancer, and targeting Wnt signaling represents a useful approach to treat cancer. Current clinical trials of Wnt signaling drugs have showed promising outcomes, and repurposing the previously approved drugs for other diseases to treat Wnt-dependent cancer requires further studies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号