Wiskott-Aldrich Syndrome Protein, Neuronal

Wiskott - Aldrich 综合征蛋白,神经元
  • 文章类型: Journal Article
    为了进入上皮细胞,专性细胞内病原体肺炎衣原体分泌早期效应蛋白,它们结合并调节宿主细胞的质膜,并募集几种关键的内吞宿主蛋白。这里,我们提出了进入相关的衣原体效应蛋白的高分辨率结构,SemD.SemD与其宿主结合伴侣的共结晶表明SemD共选择Cdc42结合位点以激活肌动蛋白细胞骨架调节剂N-WASP,使活跃,GTP结合的Cdc42是多余的。虽然SemD与N-WASP的结合比Cdc42强得多,它不结合Cdc42效应蛋白FMNL2,表明效应蛋白特异性。此外,通过识别灵活和结构化的领域,我们表明SemD可以同时与膜相互作用,内吞蛋白SNX9和N-WASP。这里,我们在结构水平上展示了单个效应蛋白如何劫持宿主内吞系统的中心成分以实现有效的内化。
    To enter epithelial cells, the obligate intracellular pathogen Chlamydia pneumoniae secretes early effector proteins, which bind to and modulate the host-cell\'s plasma membrane and recruit several pivotal endocytic host proteins. Here, we present the high-resolution structure of an entry-related chlamydial effector protein, SemD. Co-crystallisation of SemD with its host binding partners demonstrates that SemD co-opts the Cdc42 binding site to activate the actin cytoskeleton regulator N-WASP, making active, GTP-bound Cdc42 superfluous. While SemD binds N-WASP much more strongly than Cdc42 does, it does not bind the Cdc42 effector protein FMNL2, indicating effector protein specificity. Furthermore, by identifying flexible and structured domains, we show that SemD can simultaneously interact with the membrane, the endocytic protein SNX9, and N-WASP. Here, we show at the structural level how a single effector protein can hijack central components of the host\'s endocytic system for efficient internalization.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    神经突生长是神经发育的关键步骤,导致神经突分支的产生,允许单个神经元与目标区域内的多个神经元接触。聚谷氨酰胺结合蛋白1(PQBP1)是一种高度保守的蛋白质,在神经发育中具有关键作用。我们最近的质谱分析显示,PQBP1与神经Wiskott-Aldrich综合征蛋白(N-WASP)相关,参与神经突生长的重要肌动蛋白聚合促进因子。这里,我们报告说,PQBP1的WW域直接与N-WASP的脯氨酸丰富域相互作用。这种相互作用的破坏导致受损的神经突生长和生长锥大小。此外,我们证明了PQBP1/N-WASP交互对于将N-WASP招募到生长锥至关重要,但不影响N-WASP蛋白水平或N-WASP诱导的肌动蛋白聚合。我们的结果表明,PQBP1通过向生长锥招募N-WASP来调节神经突生长,因此代表了PQBP1介导神经突生长的另一种分子机制。
    Neurite outgrowth is a critical step in neural development, leading to the generation of neurite branches that allow individual neurons to make contacts with multiple neurons within the target region. Polyglutamine-binding protein 1 (PQBP1) is a highly conserved protein with a key role in neural development. Our recent mass spectrometric analysis showed that PQBP1 associates with neural Wiskott-Aldrich syndrome protein (N-WASP), an important actin polymerization-promoting factor involved in neurite outgrowth. Here, we report that the WW domain of PQBP1 directly interacts with the proline-rich domain of N-WASP. The disruption of this interaction leads to impaired neurite outgrowth and growth cone size. Furthermore, we demonstrate that PQBP1/N-WASP interaction is critical for the recruitment of N-WASP to the growth cone, but does not affect N-WASP protein levels or N-WASP-induced actin polymerization. Our results indicated that PQBP1 regulates neurite outgrowth by recruiting N-WASP to the growth cone, thus representing an alternative molecular mechanism via which PQBP1-mediates neurite outgrowth.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    肌动蛋白聚合的调节是微生物病原体中的共同主题。尽管微生物显示出广泛的策略来颠覆肌动蛋白的活性,它们中的大多数聚集在激活成核因子的物质中,例如Arp2/3复合物。布鲁氏菌属。是能够在其宿主中建立慢性感染的细胞内病原体。破坏宿主细胞反应的能力取决于细菌的附着能力,入侵,避免吞噬区室的降解,在内质网衍生的隔室和出口中复制。尽管布鲁氏菌在这些不同阶段部署的大量机制已经被识别和表征,它们都没有被描述为靶向肌动蛋白作为细胞成分。在这份手稿中,我们描述了促进生态位形成的新型毒力因子(NpeA)的鉴定。NpeA具有存在于两亲性α螺旋内的短线性基序(SLiM),该基序已被描述为结合N-WASP的GTP酶结合域(GBD)并稳定自抑制状态。我们的结果表明,NpeA以IV型分泌系统依赖性方式分泌,并且基因的缺失会降低细菌的细胞内复制能力。体外和离体实验表明,NpeA结合N-WASP,并且短线性基序是蛋白质生物学活性所必需的。重要意义调节这种基本细胞蛋白活性的肌动蛋白结合效应子的调节是细菌病原体中的一个共同主题。神经Wiskott-Aldrich综合征蛋白(N-WASP)是一种蛋白质,几种病原体靶向劫持肌动蛋白动力学。高度适应的细胞内细菌布鲁氏菌已经进化出广泛的毒力因子库,这些毒力因子调节宿主细胞的许多活性,以建立成功的细胞内复制生态位。但是,到目前为止,没有效应蛋白参与肌动蛋白动力学的调节。我们在这里介绍了一种毒力因子的鉴定,该毒力因子具有两亲性α螺旋内存在的短线性基序(SLiM),该基序已被描述为结合N-WASP的GTP酶结合域(GBD),从而稳定其自动抑制状态。我们证明该蛋白质是IV型分泌效应物,靶向N-WASP促进细胞内存活和生态位形成。
    The modulation of actin polymerization is a common theme among microbial pathogens. Even though microorganisms show a wide repertoire of strategies to subvert the activity of actin, most of them converge in the ones that activate nucleating factors, such as the Arp2/3 complex. Brucella spp. are intracellular pathogens capable of establishing chronic infections in their hosts. The ability to subvert the host cell response is dependent on the capacity of the bacterium to attach, invade, avoid degradation in the phagocytic compartment, replicate in an endoplasmic reticulum-derived compartment and egress. Even though a significant number of mechanisms deployed by Brucella in these different phases have been identified and characterized, none of them have been described to target actin as a cellular component. In this manuscript, we describe the identification of a novel virulence factor (NpeA) that promotes niche formation. NpeA harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP and stabilizes the autoinhibited state. Our results show that NpeA is secreted in a Type IV secretion system-dependent manner and that deletion of the gene diminishes the intracellular replication capacity of the bacterium. In vitro and ex vivo experiments demonstrate that NpeA binds N-WASP and that the short linear motif is required for the biological activity of the protein.IMPORTANCEThe modulation of actin-binding effectors that regulate the activity of this fundamental cellular protein is a common theme among bacterial pathogens. The neural Wiskott-Aldrich syndrome protein (N-WASP) is a protein that several pathogens target to hijack actin dynamics. The highly adapted intracellular bacterium Brucella has evolved a wide repertoire of virulence factors that modulate many activities of the host cell to establish successful intracellular replication niches, but, to date, no effector proteins have been implicated in the modulation of actin dynamics. We present here the identification of a virulence factor that harbors a short linear motif (SLiM) present within an amphipathic alpha helix that has been described to bind the GTPase-binding domain (GBD) of N-WASP stabilizing its autoinhibited state. We demonstrate that this protein is a Type IV secretion effector that targets N-WASP-promoting intracellular survival and niche formation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    足足很薄,来自质膜的富含肌动蛋白的投射,促进癌细胞的侵袭和迁移。性别决定区Y相关的高迁移率族蛋白4(SOX4)是一种重要的转录因子,在结直肠癌(CRC)的发展和转移中起作用。然而,SOX4在CRC细胞骨架重塑中的作用尚不清楚.第一次,我们证明SOX4是CRC细胞中丝状伪足形成的有效调节因子。过表达SOX4蛋白可增强HCT116和CACO2细胞的迁移和侵袭能力,这与转移有关。此外,通过phalloidin染色,在SOX4修饰的细胞系中观察到细胞骨架重新组装。SOX4的增强表达增加了细胞表面上丝状足的数量和长度。相比之下,在SOX4内源性表达较高的SW620细胞中沉默SOX4会阻碍丝状伪足的形成。此外,发现SOX4正调节肌动蛋白细胞骨架的中枢调节因子-N-Wiskott-Aldrich综合征蛋白(N-WASP)的表达;WAVE2;肌动蛋白相关蛋白,ARP2和ARP3。抑制N-WASP/ARP2/3途径减少了丝足病的形成和CRC细胞的迁移。这些结果表明SOX4在调节CRC细胞中N-WASP/ARP2/3途径介导的丝状伪足形成中的关键作用。
    Filopodia are thin, actin-rich projection from the plasma membrane that promote cancer cell invasion and migration. Sex-determining region Y-related high-mobility group-box 4 (SOX4) is a crucial transcription factor that plays a role in the development and metastasis of colorectal cancer (CRC). However, the involvement of SOX4 in cytoskeleton remodeling in CRC remains unknown. For the first time, we demonstrate that SOX4 is a potent regulator of filopodia formation in CRC cells. Overexpression of SOX4 protein enhances both migration and invasion ability of HCT116, and CACO2 cells, which is relevant to the metastasis. Furthermore, through phalloidin staining, cytoskeleton re-assembly was observed in SOX4-modified cell lines. Enhanced expression of SOX4 increased the number and length of filopodia on cell surface. In contrast, silencing SOX4 in SW620 cells with higher endogenous expression of SOX4, impeded the filopodia formation. Moreover, SOX4 was found to be positively regulating the expression of central regulators of actin cytoskeleton - N-Wiskott-Aldrich syndrome protein (N-WASP); WAVE2; Actin related proteins, ARP2 and ARP3. Inhibiting the N-WASP/ARP2/3 pathway diminishes the filopodia formation and the migration of CRC cells. These results indicate the crucial role of SOX4 in the regulation of filopodia formation mediated by N-WASP/ARP2/3 pathway in CRC cells.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    可溶性和不溶性α-突触核蛋白(α-Syn)的异常神经内积累是突触核蛋白病的主要病理标志之一,如帕金森病(PD)。已有文献证明,α-Syn的可逆液-液相分离可以调节突触前末端的突触小泡冷凝物。然而,α-Syn还可以形成液体样液滴,其可以在应激条件下转化为富含淀粉样蛋白的水凝胶或纤维状多晶型物。为了加深我们对α-Syn相变潜在机制的理解,我们采用了一系列无偏的蛋白质组学分析,发现肌动蛋白和肌动蛋白调节因子是α-Syn相互作用组的一部分。我们专注于神经Wiskott-Aldrich综合征蛋白(N-WASP),因为它与罕见的早发性家族性PD有关。在培养的细胞中,我们证明N-WASP经历相分离,可以被募集到突触素1液体样液滴,而它被排除在α-Syn/突触素1缩合物中。始终如一,我们提供的证据表明,wsp-1/WASL功能丧失会改变线虫秀丽隐杆线虫中α-Syn内含物的数量和动力学。一起,我们的发现表明,N-WASP表达可能会产生促进α-Syn缩合物及其潜在有害转化为有毒物种的允许条件。
    Abnormal intraneuronal accumulation of soluble and insoluble α-synuclein (α-Syn) is one of the main pathological hallmarks of synucleinopathies, such as Parkinson\'s disease (PD). It has been well documented that the reversible liquid-liquid phase separation of α-Syn can modulate synaptic vesicle condensates at the presynaptic terminals. However, α-Syn can also form liquid-like droplets that may convert into amyloid-enriched hydrogels or fibrillar polymorphs under stressful conditions. To advance our understanding on the mechanisms underlying α-Syn phase transition, we employed a series of unbiased proteomic analyses and found that actin and actin regulators are part of the α-Syn interactome. We focused on Neural Wiskott-Aldrich syndrome protein (N-WASP) because of its association with a rare early-onset familial form of PD. In cultured cells, we demonstrate that N-WASP undergoes phase separation and can be recruited to synapsin 1 liquid-like droplets, whereas it is excluded from α-Syn/synapsin 1 condensates. Consistently, we provide evidence that wsp-1/WASL loss of function alters the number and dynamics of α-Syn inclusions in the nematode Caenorhabditis elegans. Together, our findings indicate that N-WASP expression may create permissive conditions that promote α-Syn condensates and their potentially deleterious conversion into toxic species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    循环肿瘤细胞与血管内皮细胞(ECs)的连接是癌症转移定植的关键步骤,导致转移性生长。乳腺癌和前列腺癌是女性和男性常见的恶性肿瘤,分别。这里,我们观察到β1-整合素是人前列腺癌和乳腺癌细胞在体外剪切应力条件下粘附到EC和在体内粘附到肺血管EC所必需的。我们将IQGAP1和神经Wiskott-Aldrich综合征蛋白(NWASP)鉴定为前列腺癌和乳腺癌细胞中β1整合素转录和蛋白表达的调节剂。癌细胞中的IQGAP1和NWASP消耗减少了体外对EC的粘附,并在体内保留在肺脉管系统和转移性肺结节形成中。机械上,NWASP和IQGAP1作用于Cdc42的下游,通过蛋白质水平的细胞外信号调节激酶(ERK)/粘着斑激酶信号传导以及通过与心肌素相关的转录因子/血清反应因子(SRF)转录增加β1-整联蛋白的表达。我们的结果确定IQGAP1和NWASP是减少早期转移扩散的潜在治疗靶点。
    Attachment of circulating tumor cells to the endothelial cells (ECs) lining blood vessels is a critical step in cancer metastatic colonization, which leads to metastatic outgrowth. Breast and prostate cancers are common malignancies in women and men, respectively. Here, we observe that β1-integrin is required for human prostate and breast cancer cell adhesion to ECs under shear-stress conditions in vitro and to lung blood vessel ECs in vivo. We identify IQGAP1 and neural Wiskott-Aldrich syndrome protein (NWASP) as regulators of β1-integrin transcription and protein expression in prostate and breast cancer cells. IQGAP1 and NWASP depletion in cancer cells decreases adhesion to ECs in vitro and retention in the lung vasculature and metastatic lung nodule formation in vivo. Mechanistically, NWASP and IQGAP1 act downstream of Cdc42 to increase β1-integrin expression both via extracellular signal-regulated kinase (ERK)/focal adhesion kinase signaling at the protein level and by myocardin-related transcription factor/serum response factor (SRF) transcriptionally. Our results identify IQGAP1 and NWASP as potential therapeutic targets to reduce early metastatic dissemination.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Bin-shiphiphysin-Rvs(BAR)结构域蛋白的高阶组装,包括FCH-BAR(F-BAR)结构域蛋白,进入膜上的晶格对于亚细胞结构的形成是必不可少的。然而,他们有序集会的规定尚未阐明。这里,我们表明,生长停滞的特异性7(GAS7)的高阶组装,F-BAR结构域蛋白,受Wiskott-Aldrich综合征蛋白(WASP)/神经WASP的多价支架蛋白调节,通常与BAR结构域超家族蛋白结合,和WISH一起,Nck,激活的小鸟苷三磷酸酶Cdc42和膜锚定的吞噬受体。通过荧光共振能量转移监测的组装动力学表明,脂质体上的GAS7组装在几秒钟内开始,并且由于这些蛋白质的存在而进一步增加。在体外和细胞吞噬作用中,Wiskott-Aldrich综合征突变消除了受调节的GAS7组装。因此,Cdc42和通常与BAR结构域超家族蛋白结合的支架蛋白促进了GAS7组装。
    The higher-order assembly of Bin-amphiphysin-Rvs (BAR) domain proteins, including the FCH-BAR (F-BAR) domain proteins, into lattice on the membrane is essential for the formation of subcellular structures. However, the regulation of their ordered assembly has not been elucidated. Here, we show that the higher ordered assembly of growth-arrested specific 7 (GAS7), an F-BAR domain protein, is regulated by the multivalent scaffold proteins of Wiskott-Aldrich syndrome protein (WASP)/neural WASP, that commonly binds to the BAR domain superfamily proteins, together with WISH, Nck, the activated small guanosine triphosphatase Cdc42, and a membrane-anchored phagocytic receptor. The assembly kinetics by fluorescence resonance energy transfer monitoring indicated that the GAS7 assembly on liposomes started within seconds and was further increased by the presence of these proteins. The regulated GAS7 assembly was abolished by Wiskott-Aldrich syndrome mutations both in vitro and in cellular phagocytosis. Therefore, Cdc42 and the scaffold proteins that commonly bind to the BAR domain superfamily proteins promoted GAS7 assembly.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人WASP和N-WASP是同源蛋白,需要结合多种调节因子,包括酸性脂质PIP2和小GTP酶Cdc42,以减轻自身抑制作用,然后才能刺激肌动蛋白聚合的引发。自身抑制涉及C-末端酸性和中心基序与上游碱性区和GTP酶结合结构域的分子内结合。很少有人知道一种内在无序的蛋白质,WASP或N-WASP,结合多个调节器以实现完全激活。在这里,我们使用分子动力学模拟来表征WASP和N-WASP与PIP2和Cdc42的结合。在没有Cdc42的情况下,WASP和N-WASP都与含PIP2的膜强烈缔合,通过它们的基本区域,也可能通过N端WH1结构域的尾部。碱性区也参与Cdc42的结合,特别是对于WASP;因此Cdc42结合显着损害了WASP中碱性区域的能力,但不是N-WASP,绑定PIP2。PIP2与WASP碱性区的结合只有在Cdc42在C-末端戊烯化并与膜连接时才恢复。激活WASP和N-WASP的这种区别可能会导致它们的不同功能角色。
    Human WASP and N-WASP are homologous proteins that require the binding of multiple regulators, including the acidic lipid PIP2 and the small GTPase Cdc42, to relieve autoinhibition before they can stimulate the initiation of actin polymerization. Autoinhibition involves intramolecular binding of the C-terminal acidic and central motifs to an upstream basic region and GTPase binding domain. Little is known about how a single intrinsically disordered protein, WASP or N-WASP, binds multiple regulators to achieve full activation. Here we used molecular dynamics simulations to characterize the binding of WASP and N-WASP with PIP2 and Cdc42. In the absence of Cdc42, both WASP and N-WASP strongly associate with PIP2-containing membranes, through their basic region and also possibly through a tail portion of the N-terminal WH1 domain. The basic region also participates in Cdc42 binding, especially for WASP; consequently Cdc42 binding significantly compromises the ability of the basic region in WASP, but not N-WASP, to bind PIP2. PIP2 binding to the WASP basic region is restored only when Cdc42 is prenylated at the C-terminus and tethered to the membrane. This distinction in the activation of WASP and N-WASP may contribute to their different functional roles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在神经发育过程中,必须精确调节肌动蛋白丝网络以形成复杂的神经突结构。N-WASP通过激活肌动蛋白成核剂Arp2/3来严格控制肌动蛋白聚合动力学。然而,N-WASP-Arp2/3信号在体内神经突结构组装中的重要性尚未阐明。这里,我们证明N-WASP-Arp2/3信号在小鼠体内小脑浦肯野细胞(PC)树突的成熟中起着至关重要的作用。N-WASP在发育中的PC中表达和活化。从枝晶形成开始对Arp2/3和N-WASP的抑制严重破坏了单个茎枝晶的建立,是PC枝晶特有的基本结构。茎枝晶形成后对Arp2/3的抑制导致PC树突树的发育不全。Cdc42,N-WASP的上游活化剂,是N-WASP-Arp2/3信号介导的PC树突成熟所必需的。此外,N-WASP的过度活化也不利于PC中枝晶的形成。这些发现表明,N-WASP-Arp2/3信号的适当激活对于体内PC树突成熟的多个步骤至关重要。
    During neural development, the actin filament network must be precisely regulated to form elaborate neurite structures. N-WASP tightly controls actin polymerization dynamics by activating an actin nucleator Arp2/3. However, the importance of N-WASP-Arp2/3 signaling in the assembly of neurite architecture in vivo has not been clarified. Here, we demonstrate that N-WASP-Arp2/3 signaling plays a crucial role in the maturation of cerebellar Purkinje cell (PC) dendrites in vivo in mice. N-WASP was expressed and activated in developing PCs. Inhibition of Arp2/3 and N-WASP from the beginning of dendrite formation severely disrupted the establishment of a single stem dendrite, which is a characteristic basic structure of PC dendrites. Inhibition of Arp2/3 after stem dendrite formation resulted in hypoplasia of the PC dendritic tree. Cdc42, an upstream activator of N-WASP, is required for N-WASP-Arp2/3 signaling-mediated PC dendrite maturation. In addition, overactivation of N-WASP is also detrimental to dendrite formation in PCs. These findings reveal that proper activation of N-WASP-Arp2/3 signaling is crucial for multiple steps of PC dendrite maturation in vivo.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    发育开始时的关键事件是在卵母细胞到胚胎转变过程中收缩肌动球蛋白皮质的激活1-3。在这里,我们报告的发现,在秀丽隐杆线虫卵母细胞中,肌动球蛋白皮质激活是由成千上万的短寿命蛋白质缩合物的出现,富含F-肌动蛋白,N-WASP和ARP2/3复合物4-8形成活性微乳液。对单个皮质冷凝物动力学的相图分析表明,冷凝物最初会生长,然后在完全溶解之前过渡到分解。我们发现,与通过扩散9的冷凝物生长相反,皮质冷凝物的生长动力学是化学驱动的。值得注意的是,相关的化学反应服从控制成分和大小的质量作用动力学。我们建议所得的冷凝物动态不稳定性10抑制活性微乳液11的粗化,确保反应动力学与冷凝物大小无关,并防止在第一个皮质肌动蛋白网形成过程中失控的F-肌动蛋白成核。
    A key event at the onset of development is the activation of a contractile actomyosin cortex during the oocyte-to-embryo transition1-3. Here we report on the discovery that, in Caenorhabditis elegans oocytes, actomyosin cortex activation is supported by the emergence of thousands of short-lived protein condensates rich in F-actin, N-WASP and the ARP2/3 complex4-8 that form an active micro-emulsion. A phase portrait analysis of the dynamics of individual cortical condensates reveals that condensates initially grow and then transition to disassembly before dissolving completely. We find that, in contrast to condensate growth through diffusion9, the growth dynamics of cortical condensates are chemically driven. Notably, the associated chemical reactions obey mass action kinetics that govern both composition and size. We suggest that the resultant condensate dynamic instability10 suppresses coarsening of the active micro-emulsion11, ensures reaction kinetics that are independent of condensate size and prevents runaway F-actin nucleation during the formation of the first cortical actin meshwork.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号