Water molecular

  • 文章类型: Journal Article
    通过在800K的高温下使用初始分子动力学模拟研究了H2O在γ-U(110)和γ-U(100)表面上的解离。模拟结果表明,H2O解离为OH基团和H原子,最终吸附在铀表面。解离是由表面铀6d/5f态与H的s轨道和O的2p轨道之间的电子相互作用引起的。此外,表面铀的6d轨道和氧的2p轨道之间的杂化在解离吸附中起着主导作用。观察到从铀表面到O和H原子的大量电荷转移,表明U-O和U-H化学键的形成。具体来说,对于γ-U(110)表面,OH的最优选位点是3倍中空位点,H占据桥位点或3倍中空位点。另一方面,对于γ-U(100)表面,OH优选吸附在桥位点上,H占据3倍空心位点或桥位点。此外,当H2O被放置在顶部位置时,与γ-U(100)表面相比,它在γ-U(110)表面上的初始解离更容易。
    The dissociation of H2O onγ-U (110) andγ-U (100) surfaces has been studied by usingab initiomolecular dynamics simulations at an elevated temperature of 800 K. The simulation results show the dissociation of H2O into the OH group and H atom, which are finally adsorbed on the uranium surface. The dissociation results from electronic interactions between surface uranium 6d/5 f states and the s orbitals of H and the 2p orbitals of O. Additionally, the hybridization between the 6d orbital of surface uranium and the 2p orbital of oxygen plays a dominant role in dissociative adsorption. A significant charge transfer from the uranium surface to the O and H atoms is observed, indicating the formation of U-O and U-H chemical bonds. Specifically, forγ-U (110) surface, the most preferred site for OH is the 3-fold hollow site and H occupies the bridge site or the 3-fold hollow site. On the other hand, forγ-U (100) surface, OH prefers to adsorb on the bridge site and H occupies the 3-fold hollow site or the bridge site. Furthermore, when H2O is placed on the TOP site, its initial dissociation on theγ-U (110) surface is easier compared to theγ-U (100) surface.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    极端的环境条件往往导致水凝胶中不可逆的结构破坏和功能退化。限制其使用寿命和适用性。实现高韧性,自我修复,和低温环境中的离子电导率对于扩大其应用至关重要。在这里,我们提出了一种新颖的方法来同时增强韧性,自我修复,和水凝胶的离子电导率,通过在两性离子纤维素基水凝胶骨架内诱导不可冻结的水。这种方法使所得的水凝胶能够实现10.8MJm-3的特殊韧性,快速自我修复能力(30分钟内98.9%),和高离子电导率(2.9Sm-1),即使在-40°C下,优于国家的最先进的水凝胶。机理分析表明,两性离子纤维素纳米纤维改性聚氨酯分子网络中形成了大量具有强大静电相互作用的不可冻结水,赋予水凝胶优异的冷冻耐受性和多功能性。重要的是,该策略利用两性离子纤维素纳米纤维网络的不可冻结的水分子状态,消除了额外的防冻剂和有机溶剂的需要。此外,这些超分子分子链中的动态锌配位增强了界面相互作用,从而促进快速零下的自我修复和卓越的机械强度。展示其潜力,这种水凝胶可用于智能层压材料,如飞机挡风玻璃。
    Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m-3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m-1), even when subjected to -40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号