Volume electron microscopy

体积电子显微镜
  • 文章类型: Journal Article
    横向(t)-小管驱动心肌细胞中Ca2+的快速和同步上升。心力衰竭(HF)中的虚拟完全心房t-小管损失减少Ca2+释放。尚不清楚是否或如何恢复心房t小管,以及这如何影响收缩期Ca2。
    通过快速心室起搏在绵羊中诱发HF,并在快速起搏终止后恢复。连续的面块扫描电子显微镜和共聚焦成像用于研究t管超微结构。使用膜片钳评估功能,Ca2+,和共聚焦成像。通过Westernblot鉴定了参与心房t管恢复的候选蛋白,并在大鼠新生心室肌细胞中表达,以确定它们是否改变t管结构。
    心房t小管在HF中丢失,但在HF恢复后再次出现。恢复的t小管紊乱,采用不同的形态,t管长度和分枝增加。T管障碍与线粒体障碍有关。恢复的t小管是有功能的,触发细胞内部的Ca2+释放。收缩压Ca2+,ICa-L,肌浆网Ca2+含量,从HF恢复后恢复SERCA功能。共聚焦显微镜显示ryanodine受体染色的片段化和在HF中远离z线的运动,从HF中回收后逆转。急性拔管,为了去除恢复的T管,证实了它们在恢复收缩期Ca2+瞬变中的关键作用,Ca2+去除率,和峰值L型Ca2+电流。在HF期间,端黄素和肌管蛋白的丰度降低,在恢复期间增加。这些蛋白质的转染改变了新生肌细胞中小管的密度和结构。肌管蛋白的作用更大,增加小管长度和分支,复制在复苏心房中看到的。
    我们表明,从HF恢复可以恢复心房t小管,这促进了ICa-L的恢复,肌浆网Ca2+含量,和收缩压Ca2+。我们证明了肌管蛋白在t管恢复中的重要作用。我们的发现揭示了一种新的可行的治疗策略。
    UNASSIGNED: Transverse (t)-tubules drive the rapid and synchronous Ca2+ rise in cardiac myocytes. The virtual complete atrial t-tubule loss in heart failure (HF) decreases Ca2+ release. It is unknown if or how atrial t-tubules can be restored and how this affects systolic Ca2+.
    UNASSIGNED: HF was induced in sheep by rapid ventricular pacing and recovered following termination of rapid pacing. Serial block-face scanning electron microscopy and confocal imaging were used to study t-tubule ultrastructure. Function was assessed using patchclamp, Ca2+, and confocal imaging. Candidate proteins involved in atrial t-tubule recovery were identified by western blot and expressed in rat neonatal ventricular myocytes to determine if they altered t-tubule structure.
    UNASSIGNED: Atrial t-tubules were lost in HF but reappeared following recovery from HF. Recovered t-tubules were disordered, adopting distinct morphologies with increased t-tubule length and branching. T-tubule disorder was associated with mitochondrial disorder. Recovered t-tubules were functional, triggering Ca2+ release in the cell interior. Systolic Ca2+, ICa-L, sarcoplasmic reticulum Ca2+ content, and SERCA function were restored following recovery from HF. Confocal microscopy showed fragmentation of ryanodine receptor staining and movement away from the z-line in HF, which was reversed following recovery from HF. Acute detubulation, to remove recovered t-tubules, confirmed their key role in restoration of the systolic Ca2+ transient, the rate of Ca2+ removal, and the peak L-type Ca2+ current. The abundance of telethonin and myotubularin decreased during HF and increased during recovery. Transfection with these proteins altered the density and structure of tubules in neonatal myocytes. Myotubularin had a greater effect, increasing tubule length and branching, replicating that seen in the recovery atria.
    UNASSIGNED: We show that recovery from HF restores atrial t-tubules, and this promotes recovery of ICa-L, sarcoplasmic reticulum Ca2+ content, and systolic Ca2+. We demonstrate an important role for myotubularin in t-tubule restoration. Our findings reveal a new and viable therapeutic strategy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    神经元包含三个隔室,索马,长轴突,和树突,具有不同的能量和生化要求。线粒体的特征在所有区室和调节神经元的活动和生存,包括能量产生和钙缓冲以及其他作用,包括促凋亡信号和类固醇合成。它们的动态性使它们能够响应不断变化的能量和生化需求而经历不断的融合和裂变事件。这些事件,称为线粒体动力学,影响它们的形态和各种三维(3D)形态存在于神经元线粒体网络中。在衰老和常见的神经退行性疾病中,形态学特征的扭曲以及线粒体功能障碍可能始于神经元体细胞。然而,3D形态学不能在平面中全面检查,二维(2D)图像。这突出了需要在体积数据内分割线粒体,以提供支持健康和患病神经元内线粒体动力学和线粒体自噬的过程的代表性快照。自动高分辨率体积成像方法的出现,如串行块扫描电子显微镜(SBF-SEM)以及图像软件包的范围允许执行这一点。我们描述并评估了一种方法,该方法用于从SBF-SEM图像堆栈中随机生成的神经元体细胞感兴趣区域中随机采样线粒体并手动分割其整个形态。然后可以使用这些3D重建来生成关于线粒体和细胞形态的定量数据。我们进一步描述了宏的使用,该宏自动解剖体细胞并将3D线粒体定位到创建的子区域中。
    Neurons contain three compartments, the soma, long axon, and dendrites, which have distinct energetic and biochemical requirements. Mitochondria feature in all compartments and regulate neuronal activity and survival, including energy generation and calcium buffering alongside other roles including proapoptotic signaling and steroid synthesis. Their dynamicity allows them to undergo constant fusion and fission events in response to the changing energy and biochemical requirements. These events, termed mitochondrial dynamics, impact their morphology and a variety of three-dimensional (3D) morphologies exist within the neuronal mitochondrial network. Distortions in the morphological profile alongside mitochondrial dysfunction may begin in the neuronal soma in ageing and common neurodegenerative disorders. However, 3D morphology cannot be comprehensively examined in flat, two-dimensional (2D) images. This highlights a need to segment mitochondria within volume data to provide a representative snapshot of the processes underpinning mitochondrial dynamics and mitophagy within healthy and diseased neurons. The advent of automated high-resolution volumetric imaging methods such as Serial Block Face Scanning Electron Microscopy (SBF-SEM) as well as the range of image software packages allow this to be performed.We describe and evaluate a method for randomly sampling mitochondria and manually segmenting their whole morphologies within randomly generated regions of interest of the neuronal soma from SBF-SEM image stacks. These 3D reconstructions can then be used to generate quantitative data about mitochondrial and cellular morphologies. We further describe the use of a macro that automatically dissects the soma and localizes 3D mitochondria into the subregions created.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    体积电子显微镜包括一组电子显微镜技术,可用于检查三维生物组织和细胞的超微结构。两种块面技术,聚焦离子束扫描电子显微镜(FIB-SEM)和连续块面扫描电子显微镜(SBF-SEM)通常用于研究生物组织样品。最近,这些技术已适用于体外组织培养样品。在这里,我们描述了用于体外组织培养细胞的两种样品包埋方法的分步方案,旨在使用SBF-SEM进行研究。第一个侧重于细胞颗粒嵌入,第二个侧重于正面嵌入。En面部嵌入可以与光学显微镜相结合,这个CLEM工作流程可以用来通过光学显微镜识别特定的生物事件,然后可以使用SBF-SEM成像。我们系统地概述了修复的必要步骤,污点,通过SBF-SEM嵌入和成像贴壁组织培养细胞单层。除了样品制备,我们讨论了数据收集参数的优化。我们强调样品制备的挑战和关键步骤,以及成像变量的考虑。
    Volume electron microscopy encompasses a set of electron microscopy techniques that can be used to examine the ultrastructure of biological tissues and cells in three dimensions. Two block face techniques, focused ion beam scanning electron microscopy (FIB-SEM) and serial block face scanning electron microscopy (SBF-SEM) have often been used to study biological tissue samples. More recently, these techniques have been adapted to in vitro tissue culture samples. Here we describe step-by-step protocols for two sample embedding methods for in vitro tissue culture cells intended to be studied using SBF-SEM. The first focuses on cell pellet embedding and the second on en face embedding. En face embedding can be combined with light microscopy, and this CLEM workflow can be used to identify specific biological events by light microscopy, which can then be imaged using SBF-SEM. We systematically outline the steps necessary to fix, stain, embed and image adherent tissue culture cell monolayers by SBF-SEM. In addition to sample preparation, we discuss optimization of parameters for data collection. We highlight the challenges and key steps of sample preparation, and the consideration of imaging variables.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    阐明组织和细胞的3D纳米级结构对于理解生物过程的复杂性至关重要。电子显微镜(EM)提供可靠解释所需的分辨率,但是电子显微镜的有限吞吐量阻碍了其有效成像大体积的能力。我们使用FAST-EM报告卷EM的工作流程,一种新颖的多束扫描透射电子显微镜,通过与64个电子束并行扫描样品来加快采集速度。FAST-EM利用光学检测来分离各个光束的信号。演示了来自多个生物样品的超微结构数据的获取和3D重建。结果表明,工作流程能够产生具有高分辨率和对比度的大型重建体积,以在可行的采集时间范围内解决生物学研究问题。
    Elucidating the 3D nanoscale structure of tissues and cells is essential for understanding the complexity of biological processes. Electron microscopy (EM) offers the resolution needed for reliable interpretation, but the limited throughput of electron microscopes has hindered its ability to effectively image large volumes. We report a workflow for volume EM with FAST-EM, a novel multibeam scanning transmission electron microscope that speeds up acquisition by scanning the sample in parallel with 64 electron beams. FAST-EM makes use of optical detection to separate the signals of the individual beams. The acquisition and 3D reconstruction of ultrastructural data from multiple biological samples is demonstrated. The results show that the workflow is capable of producing large reconstructed volumes with high resolution and contrast to address biological research questions within feasible acquisition time frames.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    组织切片是研究生物结构的许多方法的核心。在现代体积电子显微镜(vEM)方法中,阵列层析成像(AT)是基于连续显微切除术,截面收集到固体支持物上,通过光和/或扫描电子显微镜成像,并将系列图像重新组装成用于分析的体积。虽然AT主要使用标准EM设备,它提供了几个优点,包括样品的长期保存以及与多尺度和多模态成像的兼容性。此外,系列超薄切片的收集提高了轴向分辨率,并提供了分子标记的访问,这有利于光学显微镜和免疫标记,并促进与EM的相关性。尽管有这些好处,AT技术在成像设施和实验室中的代表性不足,由于他们感觉到的困难和缺乏培训机会。在这里,我们指出了串行切片和图像分析方面的新颖发展,这些发展促进了AT管道,以及克服制约因素的解决方案。因为没有单一的vEM技术可以满足关于视野和分辨率的所有需求,我们勾画了一个决策树,以帮助研究人员浏览大量可用的选项。最后,我们详细阐述了AT方法的未开发潜力,以增加在不同生物领域的宝贵见解。
    Tissue slicing is at the core of many approaches to studying biological structures. Among the modern volume electron microscopy (vEM) methods, array tomography (AT) is based on serial ultramicrotomy, section collection onto solid support, imaging via light and/or scanning electron microscopy, and re-assembly of the serial images into a volume for analysis. While AT largely uses standard EM equipment, it provides several advantages, including long-term preservation of the sample and compatibility with multi-scale and multi-modal imaging. Furthermore, the collection of serial ultrathin sections improves axial resolution and provides access for molecular labeling, which is beneficial for light microscopy and immunolabeling, and facilitates correlation with EM. Despite these benefits, AT techniques are underrepresented in imaging facilities and labs, due to their perceived difficulty and lack of training opportunities. Here we point towards novel developments in serial sectioning and image analysis that facilitate the AT pipeline, and solutions to overcome constraints. Because no single vEM technique can serve all needs regarding field of view and resolution, we sketch a decision tree to aid researchers in navigating the plethora of options available. Lastly, we elaborate on the unexplored potential of AT approaches to add valuable insight in diverse biological fields.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    研究人类大脑皮层宏观连通性的功能和结构研究表明,与主要区域相比,高阶关联区域表现出更大的连通性。然而,这些大脑区域的突触组织仍未被探索。在目前的工作中,我们进行了体积电子显微镜来研究尸检时获得的人脑突触组织。具体来说,我们检查了布罗德曼区17、3b的第三层,和4,作为初级视觉的代表性区域,躯体感觉,和运动皮层。此外,我们与以前的颞极和前扣带回相关皮质区域(Brodmann区域24,38和21)的第III层数据集进行了比较分析.对9,690个突触连接进行了三维重建,表明某些突触特征特定于特定区域。每个体积的突触数量,突触后靶标的比例,突触大小可以区分一个区域和另一个区域,不管它们是联想皮层还是初级皮层。相比之下,其他突触特征是所有分析区域共有的,例如兴奋性和抑制性突触的比例,它们的形状,它们的空间分布,位于树突棘上的突触比例更高。本结果为人类大脑皮层的突触组织提供了进一步的见解。
    Functional and structural studies investigating macroscopic connectivity in the human cerebral cortex suggest that high-order associative regions exhibit greater connectivity compared to primary ones. However, the synaptic organization of these brain regions remains unexplored. In the present work, we conducted volume electron microscopy to investigate the synaptic organization of the human brain obtained at autopsy. Specifically, we examined layer III of Brodmann areas 17, 3b, and 4, as representative areas of primary visual, somatosensorial, and motor cortex. Additionally, we conducted comparative analyses with our previous datasets of layer III from temporopolar and anterior cingulate associative cortical regions (Brodmann areas 24, 38, and 21). 9,690 synaptic junctions were 3D reconstructed, showing that certain synaptic characteristics are specific to particular regions. The number of synapses per volume, the proportion of the postsynaptic targets, and the synaptic size may distinguish one region from another, regardless of whether they are associative or primary cortex. By contrast, other synaptic characteristics were common to all analyzed regions, such as the proportion of excitatory and inhibitory synapses, their shapes, their spatial distribution, and a higher proportion of synapses located on dendritic spines. The present results provide further insights into the synaptic organization of the human cerebral cortex.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    像其他体积电子显微镜方法一样,自动胶带收集超薄切除术(ATUM)可以通过扫描电子显微镜(SEM)对沉积在厚塑料胶带上的连续切片进行成像。ATUM在实现分层成像方面是独一无二的,因此可以有效筛选目标结构,根据相关的光学和电子显微镜的需要。然而,胶带上切片的SEM只能进入切片表面,从而将轴向分辨率限制为细胞囊泡的典型大小,其数量级低于获得的xy分辨率。相比之下,串联截面电子层析成像(ET),基于透射电子显微镜的方法,在全EM分辨率下产生各向同性体素,但是需要在电子稳定的薄膜和易碎的薄膜上沉积部分,从而使大切片库的筛选变得困难并且容易出现切片丢失。为了结合这两种方法的力量,我们开发了ATUM-Tomo,一种混合方法,首先通过可溶性涂层将部分可逆地附着到塑料胶带上,筛选后分离并转移到与ET相容的薄膜上。作为一个原则证明,我们应用相关的ATUM-Tomo研究了创伤性脑损伤小鼠模型中微血栓周围血脑屏障(BBB)渗漏的超微结构特征。通过注射的荧光和电子致密纳米颗粒的共聚焦成像来鉴定BBB渗漏的微血栓和相关部位。然后通过ATUM-SEM重新定位,最后被相关的ATUM-Tomo审问.总的来说,我们新的ATUM-Tomo方法将大大推进生物学现象的超微结构分析,这些生物学现象需要细胞和组织水平的环境化。
    Like other volume electron microscopy approaches, automated tape-collecting ultramicrotomy (ATUM) enables imaging of serial sections deposited on thick plastic tapes by scanning electron microscopy (SEM). ATUM is unique in enabling hierarchical imaging and thus efficient screening for target structures, as needed for correlative light and electron microscopy. However, SEM of sections on tape can only access the section surface, thereby limiting the axial resolution to the typical size of cellular vesicles with an order of magnitude lower than the acquired xy resolution. In contrast, serial-section electron tomography (ET), a transmission electron microscopy-based approach, yields isotropic voxels at full EM resolution, but requires deposition of sections on electron-stable thin and fragile films, thus making screening of large section libraries difficult and prone to section loss. To combine the strength of both approaches, we developed \'ATUM-Tomo, a hybrid method, where sections are first reversibly attached to plastic tape via a dissolvable coating, and after screening detached and transferred to the ET-compatible thin films. As a proof-of-principle, we applied correlative ATUM-Tomo to study ultrastructural features of blood-brain barrier (BBB) leakiness around microthrombi in a mouse model of traumatic brain injury. Microthrombi and associated sites of BBB leakiness were identified by confocal imaging of injected fluorescent and electron-dense nanoparticles, then relocalized by ATUM-SEM, and finally interrogated by correlative ATUM-Tomo. Overall, our new ATUM-Tomo approach will substantially advance ultrastructural analysis of biological phenomena that require cell- and tissue-level contextualization of the finest subcellular textures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    人类视网膜的中央凹,急性和色觉的专业化,具有高浓度的锥形光感受器。视网膜内侧的凹坑是由后受体神经元的离心迁移产生的。在胎儿生命的早期指定了中心凹细胞,但是中央凹在出生后达到了最终的构型。早产会阻碍迁徙,导致小坑,一个小的无血管区,和几乎连续的内部视网膜层。为了探索穆勒胶质细胞的参与,我们使用连续切片电子显微镜重建来检查在妊娠28周时出生的28岁男性器官供体中接触单个中央凹锥的Müller胶质细胞的形态和神经接触。一个小的无描述的中央凹无血管区包含大量的神经胶质过程,其中包括一类新型的“内部”Müller神经胶质。类似于跨越视网膜的经典的“外”穆勒胶质,内部Müller胶质细胞在内部核层(INL)中具有主体。这些细胞密集地填充有神经元之间的中间细丝和插入过程。不像“外”穆勒胶质,``内部``Müller胶质不会到达外部限制膜,而是终止于外部丛状层。一个完全重建的内部细胞包裹的圆锥椎弓根和一个小型双极和神经节细胞的圆锥驱动电路。在外部核层中,内部Müller胶质细胞的数量比中央凹锥高1.8倍(221,448vs.123,026个细胞/mm2)。在INL中,内部Müller胶质细胞的细胞体比外部Müller胶质细胞的细胞体多1.7倍(41,872vs.24,631个细胞/mm2)。Müllerglia占中央凹地板和Henle纤维层体积的95%和80%,分别。确定内部细胞是否仅是由于早产中内部视网膜神经元的横向迁移延迟引起的异常,需要进一步研究。
    The fovea of the human retina, a specialization for acute and color vision, features a high concentration of cone photoreceptors. A pit on the inner retinal aspect is created by the centrifugal migration of post-receptoral neurons. Foveal cells are specified early in fetal life, but the fovea reaches its final configuration postnatally. Pre-term birth retards migration resulting in a small pit, a small avascular zone, and nearly continuous inner retinal layers. To explore the involvement of Müller glia, we used serial-section electron microscopic reconstructions to examine the morphology and neural contacts of Müller glia contacting a single foveal cone in a 28-year-old male organ donor born at 28 weeks of gestation. A small non-descript foveal avascular zone contained massed glial processes that included a novel class of \'inner\' Müller glia. Similar to classic \'outer\' Müller glia that span the retina, inner Müller glia have bodies in the inner nuclear layer (INL). These cells are densely packed with intermediate filaments and insert processes between neurons. Unlike \'outer\' Müller glia, \'inner\' Müller glia do not reach the external limiting membrane but instead terminate at the outer plexiform layer. One completely reconstructed inner cell ensheathed cone pedicles and a cone-driven circuit of midget bipolar and ganglion cells. Inner Müller glia outnumber foveal cones by 1.8-fold in the outer nuclear layer (221,448 vs. 123,026 cells/mm2). Cell bodies of inner Müller glia outnumber those of outer Müller glia by 1.7-fold in the INL (41,872 vs. 24,631 cells/ mm2). Müller glia account for 95 and 80% of the volume of the foveal floor and Henle fiber layer, respectively. Determining whether inner cells are anomalies solely resulting from retarded lateral migration of inner retinal neurons in pre-term birth requires further research.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    具有特定功能的膜结合细胞器的存在是真核细胞的主要标志之一。细胞器膜由控制其功能和细胞器间通讯的特定脂质组成。使用成像和组学技术在细胞生物学中的发现揭示了驱动膜重塑的机制,细胞器接触部位,和代谢物交换。多个细胞器之间的相互作用及其相互依存关系正在成为使用体积电子显微镜(vEM)数据集的3D重建发现的下一个前沿。我们讨论了有关共同功能的细胞器与细胞途径之间联系的最新发现。具体来说,我们专注于调节细胞器动力学及其相互通信的醚甘油磷脂的代谢,以及为这些发现提供动力的新成像技术。
    The presence of membrane-bound organelles with specific functions is one of the main hallmarks of eukaryotic cells. Organelle membranes are composed of specific lipids that govern their function and interorganelle communication. Discoveries in cell biology using imaging and omic technologies have revealed the mechanisms that drive membrane remodeling, organelle contact sites, and metabolite exchange. The interplay between multiple organelles and their interdependence is emerging as the next frontier for discovery using 3D reconstruction of volume electron microscopy (vEM) datasets. We discuss recent findings on the links between organelles that underlie common functions and cellular pathways. Specifically, we focus on the metabolism of ether glycerophospholipids that mediate organelle dynamics and their communication with each other, and the new imaging techniques that are powering these discoveries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    大脑高度复杂的结构需要一种可以解开其连通性的方法。使用体积电子显微镜和专用软件,我们可以跟踪和测量不同脑组织样本中存在的所有神经纤维。有了这个软件工具,个体树突和轴突被追踪,获得每根光纤的简化“骨架”,连接到其相应的突触接触。结果是由突触连接云互连的轴突和树突的复杂网格。为了测试这种方法,我们将其应用于海马的辐射层以及小鼠体感皮层的1层和3层。我们发现神经纤维密集地堆积在神经纤维中,达到每立方毫米9公里。我们获得了突触的数量,树突和轴突的数量和长度,由树突和轴突建立的突触的线性密度,以及它们在树突棘和轴上的位置。通过这种方法获得的定量数据使我们能够识别样本突触组织的细微特征和差异,这在定性分析中可能被忽略了。
    The highly complex structure of the brain requires an approach that can unravel its connectivity. Using volume electron microscopy and a dedicated software we can trace and measure all nerve fibers present within different samples of brain tissue. With this software tool, individual dendrites and axons are traced, obtaining a simplified \"skeleton\" of each fiber, which is linked to its corresponding synaptic contacts. The result is an intricate meshwork of axons and dendrites interconnected by a cloud of synaptic junctions. To test this methodology, we apply it to the stratum radiatum of the hippocampus and layers 1 and 3 of the somatosensory cortex of the mouse. We find that nerve fibers are densely packed in the neuropil, reaching up to 9 kilometers per cubic mm. We obtain the number of synapses, the number and lengths of dendrites and axons, the linear densities of synapses established by dendrites and axons, and their location on dendritic spines and shafts. The quantitative data obtained through this method enable us to identify subtle traits and differences in the synaptic organization of the samples, which might have been overlooked in a qualitative analysis.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号