Viral entry

病毒进入
  • 文章类型: Journal Article
    多细胞生物需要细胞间的通讯来维持体内平衡和茁壮成长。为了细胞交流,一个丝状的网络,富含肌动蛋白的隧道纳米管(TNTs)通过连接相邻或远处细胞的细胞质,在促进有效的细胞间通讯中起着关键作用。大量文献表明,不同的细胞类型以复杂而复杂的组织方式使用TNT进行长距离和短距离通信。矛盾的是,几种病原体,包括病毒,利用TNTs的结构完整性来促进病毒进入和细胞间的快速传播。这些病原体利用“冲浪”机制或沿TNT的细胞内运输来绕过高流量的细胞区域并逃避免疫监视和中和。尽管TNTs存在于健康组织的各种细胞类型中,在病毒存在的情况下,它们的大小会增加。这种增强的诱导显着放大了TNTs在加剧疾病表现中的作用,严重程度,以及随后的并发症。尽管传染病领域的TNT研究取得了重大进展,进一步的研究对于准确了解TNTs在不同病理条件下的作用是必要的。这些研究对于开发旨在利用TNT相关机制进行临床应用的新型治疗策略至关重要。在这一章中,我们强调了TNTs在病毒生命周期中的重要性,展示了在病毒感染的初始阶段阻止病毒与宿主细胞相互作用的靶向方法的潜力。这种方法为干预和预防战略带来了希望。
    Multicellular organisms require cell-to-cell communication to maintain homeostasis and thrive. For cells to communicate, a network of filamentous, actin-rich tunneling nanotubes (TNTs) plays a pivotal role in facilitating efficient cell-to-cell communication by connecting the cytoplasm of adjacent or distant cells. Substantial documentation indicates that diverse cell types employ TNTs in a sophisticated and intricately organized fashion for both long and short-distance communication. Paradoxically, several pathogens, including viruses, exploit the structural integrity of TNTs to facilitate viral entry and rapid cell-to-cell spread. These pathogens utilize a \"surfing\" mechanism or intracellular transport along TNTs to bypass high-traffic cellular regions and evade immune surveillance and neutralization. Although TNTs are present across various cell types in healthy tissue, their magnitude is increased in the presence of viruses. This heightened induction significantly amplifies the role of TNTs in exacerbating disease manifestations, severity, and subsequent complications. Despite significant advancements in TNT research within the realm of infectious diseases, further studies are imperative to gain a precise understanding of TNTs\' roles in diverse pathological conditions. Such investigations are essential for the development of novel therapeutic strategies aimed at leveraging TNT-associated mechanisms for clinical applications. In this chapter, we emphasize the significance of TNTs in the life cycle of viruses, showcasing the potential for a targeted approach to impede virus-host cell interactions during the initial stages of viral infections. This approach holds promise for intervention and prevention strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    口蹄疫病毒(FMDV)小核糖核酸病毒的成员,可以通过巨噬细胞吞噬进入宿主细胞。尽管已知受体酪氨酸激酶(RTK)在FMDV巨噬细胞进入中起关键作用,负责调节该过程的特定RTK以及RTK介导的下游信号的复杂性仍有待阐明。这里,我们对RTK抑制剂进行了筛选,以评估其对FMDV的疗效.我们的发现揭示了两种特异性靶向成纤维细胞生长因子受体1(FGFR1)和FMS样酪氨酸激酶3(FLT3)的化合物显著破坏了FMDV进入。此外,通过基因敲低和过表达的额外评估证实了FGFR1和FLT3对FMDV进入的促进作用。有趣的是,我们发现FGFR1和FLT3促进的FMDV进入增加可归因于巨噬细胞摄取增加。此外,深入的机制研究表明,FGFR1与FMDVVP3相互作用,并在FMDV进入过程中发生磷酸化。此外,FGFR1抑制剂抑制FMDV诱导的Thr212和Thr423位点的p21活化激酶1(PAK1)活化。与这些发现一致,FGFR1的异位表达导致PAK1在Thr212和Thr423位点的磷酸化水平随之增加。一起来看,我们的发现代表了FGFR1参与FMDV巨噬细胞进入的初步探索,为抗病毒策略的发展提供新的见解与潜在的影响。
    Foot-and-mouth disease virus (FMDV), a member of picornavirus, can enter into host cell via macropinocytosis. Although it is known that receptor tyrosine kinases (RTKs) play a crucial role in FMDV macropinocytic entry, the specific RTK responsible for regulating this process and the intricacies of RTK-mediated downstream signaling remain to be elucidated. Here, we conducted a screening of RTK inhibitors to assess their efficacy against FMDV. Our findings revealed that two compounds specifically targeting fibroblast growth factor receptor 1 (FGFR1) and FMS-like tyrosine kinase 3 (FLT3) significantly disrupted FMDV entry. Furthermore, additional evaluation through gene knockdown and overexpression confirmed the promotion effect of FGFR1 and FLT3 on FMDV entry. Interestingly, we discovered that the increasement of FMDV entry facilitated by FGFR1 and FLT3 can be ascribed to increased macropinocytic uptake. Additionally, in-depth mechanistic study demonstrated that FGFR1 interacts with FMDV VP3 and undergoes phosphorylation during FMDV entry. Furthermore, the FGFR1 inhibitor inhibited FMDV-induced activation of p21-activated kinase 1 (PAK1) on Thr212 and Thr423 sites. Consistent with these findings, the ectopic expression of FGFR1 resulted in a concomitant increase in phosphorylation level of PAK1 on Thr212 and Thr423 sites. Taken together, our findings represent the initial exploration of FGFR1\'s involvement in FMDV macropinocytic entry, providing novel insights with potential implications for the development of antiviral strategies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    呼吸道合胞病毒(RSV)感染是幼儿和老年人急性下呼吸道疾病的主要原因。尽管在过去的几十年里付出了巨大的努力,没有针对RSV的直接作用的小分子药物。大多数靶向RSV融合(F)蛋白的小分子候选物具有诱导耐药性突变的相当大的风险。这里,我们探索了K394R变体的体外和体内病毒学特性,能够逃避多种RSV融合抑制剂的交叉抗性突变体。我们的结果表明,K394R变体在体外具有高度融合性,并且在体内比亲本菌株更具致病性。小分子(2E,2\'E)-N,N'-((1R,2S,3S)-3-羟基环己烷-1,2-二基)双(3-(2-溴-4-氟苯基)丙烯酰胺)(CL-A3-7),从天然咖啡酰奎宁酸衍生物衍生的结构优化的化合物,显著降低了野生型RSV和K394R变体的体外和体内感染。机械上,CL-A3-7通过阻断病毒F蛋白与细胞胰岛素样生长因子1受体(IGF1R)之间的相互作用,显着抑制RSV进入过程中病毒-细胞融合。总的来说,这些结果表明由K394R变异体引起的严重疾病风险,并揭示了克服K394R相关耐药的新的抗RSV机制.
    目的:呼吸道合胞病毒(RSV)感染是一个主要的公共卫生问题,并且许多靶向病毒融合(F)蛋白的小分子候选物与诱导耐药突变的相当大的风险相关。这项研究调查了K394R变体的病毒学特征,对多种RSV融合抑制剂赋予抗性的突变株。我们的结果表明,K394R变体在细胞培养物中具有高度融合性,并且比小鼠的亲本菌株更具致病性。小分子抑制剂CL-A3-7通过阻断病毒F蛋白与其细胞受体的相互作用,大大减少了野生型RSV和K394R变体的体外和体内感染。显示小分子抑制RSV感染并克服K394R相关抗性的新作用机制。
    Infection with respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract disease in young children and older people. Despite intensive efforts over the past few decades, no direct-acting small-molecule agents against RSV are available. Most small-molecule candidates targeting the RSV fusion (F) protein pose a considerable risk of inducing drug-resistant mutations. Here, we explored the in vitro and in vivo virological properties of the K394R variant, a cross-resistant mutant capable of evading multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in vitro and more pathogenic than the parental strain in vivo. The small molecule (2E,2\'E)-N,N\'-((1R,2S,3S)-3-hydroxycyclohexane-1,2-diyl)bis(3-(2-bromo-4-fluorophenyl) acrylamide) (CL-A3-7), a structurally optimized compound derived from a natural caffeoylquinic acid derivative, substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant. Mechanistically, CL-A3-7 significantly inhibited virus-cell fusion during RSV entry by blocking the interaction between the viral F protein and the cellular insulin-like growth factor 1 receptor (IGF1R). Collectively, these results indicate severe disease risks caused by the K394R variant and reveal a new anti-RSV mechanism to overcome K394R-associated resistance.
    OBJECTIVE: Respiratory syncytial virus (RSV) infection is a major public health concern, and many small-molecule candidates targeting the viral fusion (F) protein are associated with a considerable risk of inducing drug-resistant mutations. This study investigated virological features of the K394R variant, a mutant strain conferring resistance to multiple RSV fusion inhibitors. Our results demonstrated that the K394R variant is highly fusogenic in cell cultures and more pathogenic than the parental strain in mice. The small-molecule inhibitor CL-A3-7 substantially reduced in vitro and in vivo infections of both wild-type RSV and the K394R variant by blocking the interaction of viral F protein with its cellular receptor, showing a new mechanism of action for small-molecules to inhibit RSV infection and overcome K394R-associated resistance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    新兴的高致病性病毒可能对全球健康产生深远的影响,经济,和社会。为了迎接这一挑战,美国国家过敏和传染病研究所(NIAID)建立了9个抗病毒药物发现(AViDD)中心,用于对具有大流行潜力的病毒进行新型抗病毒候选药物的早期鉴定和验证.作为这一举措的一部分,我们建立了配对进入试验,同时筛选特异性靶向SARS-CoV-2(SARS2)的抑制剂,拉沙病毒(LASV)和Machupo病毒(MACV)条目。为此,我们采用了双重假型病毒(PV)感染系统,使我们能够有效且经济地筛选约650,000种化合物。将这些配对分析调整为1536孔板格式以进行超高通量筛选(uHTS),从而在我们的设施中进行了最大的筛选。已完成240多万口井。配对感染系统允许我们同时检测两种PV感染:LASV+MACV,MACV+SARS2和SARS2+LASV。每个PV包含不同的荧光素酶报告基因,使我们能够专门测量每个PV的感染,虽然在同一口井里。每个PV至少使用不同的记者筛选两次,这使我们能够选择对特定PV具有特异性的抑制剂,并排除那些击中目标的抑制剂,包括细胞成分或报告蛋白。所有测定都是稳健的,平均Z'值在0.5至0.8的范围内。对650,000种化合物的初步筛选导致LASV的1,812、1,506和2,586种独特命中,MACV,和SARS2。确认筛选将此列表进一步缩小到LASV特有的60、40和90种化合物,MACV,和SARS2。在这些化合物中,8、35和50个化合物显示IC50值<10μM,其中一些对LASV具有更大的效力和优异的抗病毒活性,MACV,和SARS2,没有一个是细胞毒性的。目前正在研究这些选定的化合物的作用机制,并通过化学修饰提高其特异性和效力。
    Emerging highly pathogenic viruses can pose profound impacts on global health, the economy, and society. To meet that challenge, the National Institute of Allergy and Infectious Diseases (NIAID) established nine Antiviral Drug Discovery (AViDD) centers for early-stage identification and validation of novel antiviral drug candidates against viruses with pandemic potential. As part of this initiative, we established paired entry assays that simultaneously screen for inhibitors specifically targeting SARS-CoV-2 (SARS2), Lassa virus (LASV) and Machupo virus (MACV) entry. To do so we employed a dual pseudotyped virus (PV) infection system allowing us to screen ∼650,000 compounds efficiently and cost-effectively. Adaptation of these paired assays into 1536 well-plate format for ultra-high throughput screening (uHTS) resulted in the largest screening ever conducted in our facility, with over 2.4 million wells completed. The paired infection system allowed us to detect two PV infections simultaneously: LASV + MACV, MACV + SARS2, and SARS2 + LASV. Each PV contains a different luciferase reporter gene which enabled us to measure the infection of each PV exclusively, albeit in the same well. Each PV was screened at least twice utilizing different reporters, which allowed us to select the inhibitors specific to a particular PV and to exclude those that hit off targets, including cellular components or the reporter proteins. All assays were robust with an average Z\' value ranging from 0.5 to 0.8. The primary screening of ∼650,000 compounds resulted in 1812, 1506, and 2586 unique hits for LASV, MACV, and SARS2, respectively. The confirmation screening narrowed this list further to 60, 40, and 90 compounds that are unique to LASV, MACV, and SARS2, respectively. Of these compounds, 8, 35, and 50 compounds showed IC50 value < 10 μM, some of which have much greater potency and excellent antiviral activity profiles specific to LASV, MACV, and SARS2, and none are cytotoxic. These selected compounds are currently being studied for their mechanism of action and to improve their specificity and potency through chemical modification.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    狂犬病病毒在全球范围内每年估计造成59,000人死亡,有希望的治疗方法是必要的。在这项研究中,亲和标签纯化质谱用于描述RABV糖蛋白和宿主蛋白的相互作用,PDIA3/ERP57被确定为RABV感染的潜在抑制剂。PDIA3限制性RABV感染的机制如下:PDIA3通过选择性巨自噬/自噬途径靶向赖氨酸332介导RABVG蛋白降解;AP3B1(衔接子相关蛋白复合物3亚基β1)在PDIA3触发的G蛋白选择性降解中是不可缺少的;PDIA3与NCAM1/NCAM(神经细胞粘附分子1)竞争性结合以阻断RABVG,阻碍病毒进入宿主细胞。PDIA3与RABVG蛋白结合的190-199aa残基对于防御RABV是必需的且足以。这些结果证明了靶向PDIA3或利用PDIA3190-199aa肽治疗临床狂犬病的生物制剂的治疗潜力。
    Rabies virus causes an estimated 59,000 annual fatalities worldwide and promising therapeutic treatments are necessary to develop. In this study, affinity tag-purification mass spectrometry was employed to delineate RABV glycoprotein and host protein interactions, and PDIA3/ERP57 was identified as a potential inhibitor of RABV infection. PDIA3 restricted RABV infection with follow mechanisms: PDIA3 mediated the degradation of RABV G protein by targeting lysine 332 via the selective macroautophagy/autophagy pathway; The PDIA3 interactor, AP3B1 (adaptor related protein complex 3 subunit beta 1) was indispensable in PDIA3-triggered selective degradation of the G protein; Furthermore, PDIA3 competitively bound with NCAM1/NCAM (neural cell adhesion molecule 1) to block RABV G, hindering viral entry into host cells. PDIA3 190-199 aa residues bound to the RABV G protein were necessary and sufficient to defend against RABV. These results demonstrated the therapeutic potential of biologics that target PDIA3 or utilize PDIA3 190-199 aa peptide to treat clinical rabies.Abbreviation: aa: amino acids; ANXA2: annexin A2; AP-MS: affinity tag purification-mass spectrometry; AP3B1: adaptor related protein complex 3 subunit beta 1; ATP6V1A: ATPase H+ transporting V1 subunit A; ATP6V1H: ATPase H+ transporting V1 subunit H; BafA1: bafilomycin A1; CHX: cycloheximide; co-IP: co-immunoprecipitation; DDX17: DEAD-box helicase 17; DmERp60: drosophila melanogaster endoplasmic reticulum p60; EBOV: Zaire ebolavirus virus; EV: empty vector; GANAB: glucosidase II alpha subunit; G protein: glycoprotein; GRM2/mGluR2: glutamate metabotropic receptor 2; HsPDIA3: homo sapiens protein disulfide isomerase family A member 3; IAV: influenza virus; ILF2: interleukin enhancer binding factor 2; KO: knockout; MAGT1: magnesium transporter 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MmPDIA3: mus musculus protein disulfide isomerase associated 3; NCAM1/NCAM: neural cell adhesion molecule 1; NGFR/p75NTR: nerve growth factor receptor; NGLY1: N-glycanase 1; OTUD4: OTU deubiquitinase 4; PDI: protein disulfide isomerase; PPIs: protein-protein interactions; RABV: rabies virus; RUVBL2: RuvB like AAA ATPase 2; SCAMP3: secretory carrier membrane protein 3; ScPdi1: Saccharomyces cerevisiae s288c protein disulfide isomerase 1; SLC25A6: solute carrier family 25 member 6; SQSTM1/p62: sequestosome 1; VSV: vesicular stomatitis virus.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    orf病毒(ORFV)对家庭小反刍动物的健康构成严重威胁(即,绵羊和山羊)和全球范围内的人类,每年给畜牧业造成约1.5亿美元的损失。然而,涉及ORFV感染和复制的宿主因素仍然难以捉摸。在这项研究中,我们比较了ORFV感染或未感染的绵羊睾丸间质细胞(STIC)的RNA-seq谱,并鉴定了一个新的宿主基因,钾电压门控通道亚家族E成员4(KCNE4),作为参与ORFV感染的关键宿主因子。RNA-seq数据和RT-qPCR测定均显示,在感染后(hpi)9至48小时,感染的STIC中KCNE4的表达显著增加。另一方面,RT-qPCR检测到ORFV感染后KCNE4siRNA和KCNE4敲除(KO)HeLa细胞转染的STIC中ORFV拷贝数减少,在24hpi时,KOHeLa细胞中ORFV-GFP的荧光比率降低,表明KCNE4对ORFV感染至关重要。此外,附着和内化分析显示ORFV附着减少,内化,复制,并由KOHeLa细胞释放,证明了KCNE4对ORFV进入细胞的潜在抑制作用。用KCNE4抑制剂如奎尼丁和氟西汀预处理显著抑制ORFV感染。我们所有的发现都揭示了KCNE4作为ORFV进入和复制的新型宿主调节因子,为ORFV感染的相互作用机制提供了新的见解。该研究还强调了K+通道可能是阻止病毒感染和疾病的药物靶标。
    The orf virus (ORFV) poses a serious threat to the health of domestic small ruminants (i.e., sheep and goats) and humans on a global scale, causing around $150 million in annual losses to livestock industry. However, the host factors involved in ORFV infection and replication are still elusive. In this study, we compared the RNA-seq profiles of ORFV-infected or non-infected sheep testicular interstitial cells (STICs) and identified a novel host gene, potassium voltage-gated channel subfamily E member 4 (KCNE4), as a key host factor involved in the ORFV infection. Both RNA-seq data and RT-qPCR assay revealed a significant increase in the expression of KCNE4 in the infected STICs from 9 to 48 h post infection (hpi). On the other hand, the RT-qPCR assay detected a decrease in ORFV copy number in both the STICs transfected by KCNE4 siRNA and the KCNE4 knockout (KO) HeLa cells after the ORFV infection, together with a reduced fluorescence ratio of ORFV-GFP in the KO HeLa cells at 24 hpi, indicating KCNE4 to be critical for the ORFV infection. Furthermore, the attachment and internalization assays showed decreased ORFV attachment, internalization, replication, and release by the KO HeLa cells, demonstrating a potential inhibition of ORFV entry into the cells by KCNE4. Pretreatment with the KCNE4 inhibitors such as quinidine and fluoxetine significantly repressed the ORFV infection. All our findings reveal KCNE4 as a novel host regulator of the ORFV entry and replication, shedding new insight into the interactive mechanism of ORFV infection. The study also highlights the K+ channels as possible druggable targets to impede viral infection and disease.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    SARS-CoV-2冠状病毒进入宿主细胞的机制之一涉及内体酸化。有人提出,在酸性条件下,SARS-CoV-2尖峰糖蛋白的融合肽近端区域(FPPR)充当pH依赖性开关,通过影响受体结合域(RBD)的定位来调节免疫应答可及性。这将提供RBD开口与环境pH的间接偶联。这里,我们探索了SARS-CoV-2刺突糖蛋白中FPPR的这种可能的pH依赖性构象平衡。我们分析了来自蛋白质数据库的数百个实验确定的尖峰结构,并进行了pH复制交换分子动力学,以探索FPPR构象取决于pH和RBD定位的程度。对实验结构的荟萃分析确定了FPPR在其中解决了该柔性区域的结构中的交替构象。然而,结果不支持FPPR构象与RBD位置或低温EM实验报告的pH之间的相关性.我们使用PDB结构计算了FPPR区可滴定侧链的pKa值,但是这些pKa值在其他采用相同FPPR构象类型的替代PDB结构之间显示出很大的差异。这妨碍了不同FPPR构象中pKa值的比较,以合理化pH依赖性构象变化。我们通过全原子模拟补充了这些基于PDB的分析,并使用恒定pH复制交换分子动力学来估计柔性和显式水的pKa值。所得的滴定曲线在模拟之间显示出良好的再现性,但他们也表明,不同FPPR构象的滴定曲线在误差棒内是相同的。总之,我们无法找到支持先前发表的FPPRpH依赖性平衡假说的证据:无论是现有的实验数据还是恒定pHMD模拟.该研究强调了尖峰系统的复杂性,并为进一步探索pH和SARS-CoV-2病毒进入机制之间的相互作用开辟了途径。
    One of the entry mechanisms of the SARS-CoV-2 coronavirus into host cells involves endosomal acidification. It has been proposed that under acidic conditions, the fusion peptide proximal region (FPPR) of the SARS-CoV-2 spike glycoprotein acts as a pH-dependent switch, modulating immune response accessibility by influencing the positioning of the receptor binding domain (RBD). This would provide indirect coupling of RBD opening to the environmental pH. Here, we explored this possible pH-dependent conformational equilibrium of the FPPR within the SARS-CoV-2 spike glycoprotein. We analyzed hundreds of experimentally determined spike structures from the Protein Data Bank and carried out pH-replica exchange molecular dynamics to explore the extent to which the FPPR conformation depends on pH and the positioning of the RBD. A meta-analysis of experimental structures identified alternate conformations of the FPPR among structures in which this flexible regions was resolved. However, the results did not support a correlation between the FPPR conformation and either RBD position or the reported pH of the cryo-EM experiment. We calculated pKa values for titratable side chains in the FPPR region using PDB structures, but these pKa values showed large differences between alternate PDB structures that otherwise adopt the same FPPR conformation type. This hampers the comparison of pKa values in different FPPR conformations to rationalize a pH-dependent conformational change. We supplemented these PDB-based analyses with all-atom simulations and used constant-pH replica exchange molecular dynamics to estimate pKa values in the context of flexibility and explicit water. The resulting titration curves show good reproducibility between simulations, but they also suggest that the titration curves of the different FPPR conformations are the same within the error bars. In summary, we were unable to find evidence supporting the previously published hypothesis of an FPPR pH-dependent equilibrium: neither from existing experimental data nor from constant-pH MD simulations. The study underscores the complexity of the spike system and opens avenues for further exploration into the interplay between pH and SARS-CoV-2 viral entry mechanisms.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    背景:在寻找抗COVID-19疗法时,1,2,3,4,6-五-O-没食子酰-βD-吡喃葡萄糖苷,一种从许多传统草药中分离出来的天然多酚化合物,已被报道为RBD-ACE2结合抑制剂和靶向SARSCoV-2的主要蛋白酶和RNA依赖性RNA聚合酶的广谱抗冠状病毒抑制剂。为了促进1,2,3,4,6-五-O-没食子酰-β-D-吡喃葡萄糖苷的构效关系研究,我们描述了它的化学合成和表征,以及它对SARS-CoV-2与宿主ACE2受体相互作用的活性。
    方法:由3,4,5-三苄氧苯甲酸和β-D-吡喃葡萄糖苷通过两个定量步骤合成了1,2,3,4,6-五烷基-O-没食子酰基-β-D-吡喃葡萄糖苷:DCC介导的酯化和钯催化的去苄基化。使用SARS-CoV-2尖峰三聚体(S1S2)ACE2抑制剂筛选比色测定试剂盒评估合成的分子,SARS-CoV2尖峰S1RBDACE2抑制剂筛选比色测定试剂盒,和使用Spike(SARS-CoV-2)假型慢病毒的细胞中和测定法,ACE2-HEK293重组细胞系。
    结果:化学合成的产物阻断了SARSCoV-2的尖峰三聚体与人ACE2受体的结合,IC50=22±2µM。它还以IC50=27±3µM阻断ACE2:尖峰RBD结合。重要的是,它抑制了SARS2-CoV2-Spike假型化慢病毒对ACE2HEK293细胞系的感染性,IC50=20±2µM。
    结论:总体而言,化学合成的1,2,3,4,6-五-O-没食子酰-β-D-吡喃葡萄糖苷是开发抗SARS-CoV-2疗法的先导分子,该疗法通过阻断病毒进入宿主细胞来阻断病毒感染的初始阶段。
    BACKGROUND: In the search for anti-COVID-19 therapy, 1,2,3,4,6-pentakis-O-galloyl-βD-glucopyranoside, a natural polyphenolic compound isolated from many traditional medicinal herbs, has been reported as an RBD-ACE2 binding inhibitor and as a broad-spectrum anticoronaviral inhibitor targeting the main protease and RNA-dependent RNA polymerase of SARSCoV-2. To facilitate the structure-activity relationship studies of 1,2,3,4,6-pentakis-O-galloyl-β-Dglucopyranoside, we describe its chemical synthesis and characterization, as well as its activity towards the SARS-CoV-2 spike interaction with host ACE2 receptor.
    METHODS: 1,2,3,4,6-Pentakis-O-galloyl-β-D-glucopyranoside was synthesized in two quantitative steps from 3,4,5-tribenzyloxybenzoic acid and β-D-glucopyranoside: DCC-mediated esterification and palladium-catalyzed per-debenzylation. The synthesized molecule was evaluated using a SARS-CoV-2 spike trimer (S1 + S2) ACE2 inhibitor screening colorimetric assay kit, SARS-CoV2 spike S1 RBD ACE2 inhibitor screening colorimetric assay kit, and a cellular neutralization assay using the Spike (SARS-CoV-2) Pseudotyped Lentivirus, ACE2-HEK293 recombinant cell line.
    RESULTS: The chemically synthesized product blocked the binding of the spike trimer of SARSCoV-2 to the human ACE2 receptor with IC50=22±2 µM. It also blocked ACE2:spike RBD binding with IC50=27±3 µM. Importantly, it inhibited the infectivity of SARS2-CoV2-Spike pseudotyped lentivirus on the ACE2 HEK293 cell line with IC50=20±2 µM.
    CONCLUSIONS: Overall, the chemically synthesized 1,2,3,4,6-pentakis-O-galloyl-β-D-glucopyranoside represents a lead molecule to develop anti-SARS-CoV-2 therapies that block the initial stage of the viral infection by blocking the virus entry to the host cell.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    已显示许多共受体促进SARS-CoV-2的hACE2依赖性或hACE2非依赖性感染。Yu等人最近发表在mBio上的一项研究。表明组胺受体H1(HRH1)通过直接结合病毒刺突蛋白(F.Yu,X.Liu,H.Ou,X.李,etal.,mBioe01088-24,2024,https://doi.org/10.1128/mbio.01088-24)。此外,他们提供了令人信服的证据,证明针对HRH1的抗组胺药物能有效抑制SARS-CoV-2进入.这项研究强调了可再利用的抗组胺药对COVID-19的治疗潜力。
    Numerous coreceptors have been shown to facilitate hACE2-dependent or hACE2-independent infection by SARS-CoV-2. A recent study published in mBio by Yu et al. showed that the histamine receptor H1 (HRH1) functions as an alternative receptor for SARS-CoV-2 via direct binding to viral spike proteins (F. Yu, X. Liu, H. Ou, X. Li, et al., mBio e01088-24, 2024, https://doi.org/10.1128/mbio.01088-24). Furthermore, they present compelling evidence that antihistamine drugs targeting HRH1 potently inhibit SARS-CoV-2 entry. This study highlights the therapeutic potential of repurposable antihistamines against COVID-19.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    沙蝇传播的托斯卡纳病毒(TOSV)是一种有包膜的三节段负单链RNAPhlebovirus。它是一种新兴病毒,主要在欧洲西南部和北非流行。尽管TOSV感染通常无症状或导致轻度发热疾病,它具有神经毒性,在某些地区是夏季脑膜炎的三个最常见原因之一。尽管有这种临床意义,我们对调节静脉病毒感染的分子方面和宿主因素的理解是有限的。这项研究表征了TOSV感染的早期步骤。我们的发现揭示了Ser/Thr激酶的Numb相关激酶家族的两个成员,即衔接子相关激酶1(AAK1)和细胞周期蛋白G相关激酶(GAK),在调节TOSV进入的早期阶段发挥作用。FDA批准的靶向这些激酶的抑制剂表现出对TOSV感染的显著抑制。这项研究表明,AAK1和GAK代表了抑制TOSV感染的药物靶标,潜在的,相关的滴虫病毒。
    Sandfly-borne Toscana virus (TOSV) is an enveloped tri-segmented negative single-strand RNA Phlebovirus. It is an emerging virus predominantly endemic in southwestern Europe and Northern Africa. Although TOSV infection is typically asymptomatic or results in mild febrile disease, it is neurovirulent and ranks among the three most common causes of summer meningitis in certain regions. Despite this clinical significance, our understanding of the molecular aspects and host factors regulating phlebovirus infection is limited. This study characterized the early steps of TOSV infection. Our findings reveal that two members of the Numb-associated kinases family of Ser/Thr kinases, namely adaptor-associated kinase 1 (AAK1) and cyclin G-associated kinase (GAK), play a role in regulating the early stages of TOSV entry. FDA-approved inhibitors targeting these kinases demonstrated significant inhibition of TOSV infection. This study suggests that AAK1 and GAK represent druggable targets for inhibiting TOSV infection and, potentially, related Phleboviruses.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号