Vesicular glutamate transporters

  • 文章类型: Journal Article
    谷氨酸(Glu)是大脑中一种主要的兴奋性神经递质,对突触可塑性至关重要,神经元活动,和记忆形成。然而,它的失调导致兴奋性毒性,与神经退行性疾病和脑缺血有关。囊泡谷氨酸转运蛋白(VGLUTs)调节Glu加载到突触囊泡,对于维持最佳的细胞外Glu水平至关重要。这项研究调查了在氧葡萄糖剥夺(OGD)条件下,VGLUT1抑制在过表达VGLUT1的HT22细胞中的神经保护作用。HT22细胞,海马神经元模型,用慢病毒载体转导以过表达VGLUT1。细胞进行OGD,与芝加哥天蓝6B(CSB6B)的预孵化,非特异性VGLUT抑制剂。细胞活力,乳酸脱氢酶(LDH)释放,线粒体膜电位,和缺氧相关蛋白标志物(PARP1、AIF、NLRP3)进行了评估。结果表明,VGLUT1过表达增加了OGD的脆弱性,更高的LDH释放和降低的细胞活力证明。CSB6B处理改善了OGD条件下的细胞活力和减少的LDH释放,特别是在0.1μM和1.0μM浓度下。此外,CSB6B保留了线粒体膜电位,降低了PARP1、AIF、和NLRP3蛋白,提示通过减轻兴奋性毒性的神经保护作用。这项研究表明,VGLUT1抑制可能是缺血性脑损伤的一种有前途的治疗策略,需要进一步研究选择性VGLUT1抑制剂。
    Glutamate (Glu) is a major excitatory neurotransmitter in the brain, essential for synaptic plasticity, neuronal activity, and memory formation. However, its dysregulation leads to excitotoxicity, implicated in neurodegenerative diseases and brain ischemia. Vesicular glutamate transporters (VGLUTs) regulate Glu loading into synaptic vesicles, crucial for maintaining optimal extracellular Glu levels. This study investigates the neuroprotective effects of VGLUT1 inhibition in HT22 cells overexpressing VGLUT1 under oxygen glucose deprivation (OGD) conditions. HT22 cells, a hippocampal neuron model, were transduced with lentiviral vectors to overexpress VGLUT1. Cells were subjected to OGD, with pre-incubation of Chicago Sky Blue 6B (CSB6B), an unspecific VGLUT inhibitor. Cell viability, lactate dehydrogenase (LDH) release, mitochondrial membrane potential, and hypoxia-related protein markers (PARP1, AIF, NLRP3) were assessed. Results indicated that VGLUT1 overexpression increased vulnerability to OGD, evidenced by higher LDH release and reduced cell viability. CSB6B treatment improved cell viability and reduced LDH release in OGD conditions, particularly at 0.1 μM and 1.0 μM concentrations. Moreover, CSB6B preserved mitochondrial membrane potential and decreased levels of PARP1, AIF, and NLRP3 proteins, suggesting neuroprotective effects through mitigating excitotoxicity. This study demonstrates that VGLUT1 inhibition could be a promising therapeutic strategy for ischemic brain injury, warranting further investigation into selective VGLUT1 inhibitors.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    阿尔茨海默病(AD)是一种进行性神经退行性疾病,其治疗选择非常有限。兴奋性神经递质系统的功能障碍被认为在这种情况的发病机理中起主要作用。囊泡谷氨酸转运蛋白(VGLUTs)是控制谷氨酸定量释放的关键。因此,疾病的表达变化可能对异常的神经元活动有影响,提高治疗目标的可能性。没有关于VGLUTs在AD患者颞叶内侧的表达的信息,最早也是受影响最严重的大脑区域之一。这项研究旨在量化和比较海马中对照和AD病例之间VGLUT1和VGLUT2的层特异性表达。下膜,内嗅皮层,和颞上回.使用自由漂浮荧光免疫组织化学标记海马中的VGLUT1和VGLUT2,下膜,内嗅皮层,和颞上回.使用激光扫描共聚焦显微镜对切片进行成像,并进行转运体光密度分析。AD组织中VGLUT1密度无显著差异,除了在齿状回层分子中观察到较低的染色密度(p=0.0051)。AD病例的海马和内嗅皮层中VGLUT2的表达没有改变,但在下膜(p=0.015)和颞上回(p=0.0023)中明显较低。这项研究表明,AD中颞叶内侧和颞上回的VGLUT1和VGLUT2表达具有区域特异性的脆弱性。然而,需要进一步研究这些紊乱的原因和功能后果,以评估VGLUT1和VGLUT2作为可行的治疗靶点.
    Alzheimer\'s disease (AD) is a progressive neurodegenerative disorder for which there are very limited treatment options. Dysfunction of the excitatory neurotransmitter system is thought to play a major role in the pathogenesis of this condition. Vesicular glutamate transporters (VGLUTs) are key to controlling the quantal release of glutamate. Thus, expressional changes in disease can have implications for aberrant neuronal activity, raising the possibility of a therapeutic target. There is no information regarding the expression of VGLUTs in the human medial temporal lobe in AD, one of the earliest and most severely affected brain regions. This study aimed to quantify and compare the layer-specific expression of VGLUT1 and VGLUT2 between control and AD cases in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Free-floating fluorescent immunohistochemistry was used to label VGLUT1 and VGLUT2 in the hippocampus, subiculum, entorhinal cortex, and superior temporal gyrus. Sections were imaged using laser-scanning confocal microscopy and transporter densitometric analysis was performed. VGLUT1 density was not significantly different in AD tissue, except lower staining density observed in the dentate gyrus stratum moleculare (p = 0.0051). VGLUT2 expression was not altered in the hippocampus and entorhinal cortex of AD cases but was significantly lower in the subiculum (p = 0.015) and superior temporal gyrus (p = 0.0023). This study indicates a regionally specific vulnerability of VGLUT1 and VGLUT2 expression in the medial temporal lobe and superior temporal gyrus in AD. However, the causes and functional consequences of these disturbances need to be further explored to assess VGLUT1 and VGLUT2 as viable therapeutic targets.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Published Erratum
    [这更正了文章DOI:10.3389/fnana.2023.1242839。].
    [This corrects the article DOI: 10.3389/fnana.2023.1242839.].
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    丘脑是皮层和皮层下脑运动系统之间的中心环节。来自小脑深核(DCN)的轴突,或基底神经节系统的输出核(黑质网状,SNr;和内部苍白球GPi/ENT)单突触支配丘脑,突出的是腹核群的一些核。反过来,这些腹核的轴突支配皮质的运动和运动前区域,他们的投入对计划至关重要,执行和学习快速和精确的运动。近年来,小鼠已成为运动系统研究中广泛使用的模型。然而,关于啮齿动物丘脑中小脑和基底神经节输入分布的信息仍然不明确。这里,我们映射了来自DCN的输入分布,SNr,和GPi/ENT到小鼠丘脑的腹核。谷氨酸能和GABA能神经传递标记的免疫标记描绘了两个不同的主要领域,特征在于存在大的2型囊泡谷氨酸转运蛋白(vGLUT2)点或囊泡GABA转运蛋白(vGAT)点。DCN轴突的顺行标记显示,它们几乎到达腹核的所有部分,尽管富含vGAT的部门的轴突静脉曲张(假定的boutons)始终小于富含vGLUT2的部门。相比之下,SNr轴突支配整个vGAT丰富的区域,但不是vGLUT2丰富的行业。发现GPi/ENT轴突仅支配vGAT丰富区域的一小部分区域,其他两个输入系统也将其作为目标。因为输入从根本上定义了丘脑细胞的功能,我们提出了一种与DCN分布一致的小鼠腹侧运动核的新轮廓,SNr和GPi/ENT输入并类似于灵长类动物腹侧运动核的总体布局。
    The thalamus is a central link between cortical and subcortical brain motor systems. Axons from the deep nuclei of the cerebellum (DCN), or the output nuclei of the basal ganglia system (substantia nigra reticulata, SNr; and internal pallidum GPi/ENT) monosynaptically innervate the thalamus, prominently some nuclei of the ventral nuclear group. In turn, axons from these ventral nuclei innervate the motor and premotor areas of the cortex, where their input is critical for planning, execution and learning of rapid and precise movements. Mice have in recent years become a widely used model in motor system research. However, information on the distribution of cerebellar and basal ganglia inputs in the rodent thalamus remains poorly defined. Here, we mapped the distribution of inputs from DCN, SNr, and GPi/ENT to the ventral nuclei of the mouse thalamus. Immunolabeling for glutamatergic and GABAergic neurotransmission markers delineated two distinct main territories, characterized each by the presence of large vesicular glutamate transporter type 2 (vGLUT2) puncta or vesicular GABA transporter (vGAT) puncta. Anterograde labeling of axons from DCN revealed that they reach virtually all parts of the ventral nuclei, albeit its axonal varicosities (putative boutons) in the vGAT-rich sector are consistently smaller than those in the vGLUT2-rich sector. In contrast, the SNr axons innervate the whole vGAT-rich sector, but not the vGLUT2-rich sector. The GPi/ENT axons were found to innervate only a small zone of the vGAT-rich sector which is also targeted by the other two input systems. Because inputs fundamentally define thalamic cell functioning, we propose a new delineation of the mouse ventral motor nuclei that is consistent with the distribution of DCN, SNr and GPi/ENT inputs and resembles the general layout of the ventral motor nuclei in primates.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    帕金森病(PD)是一种常见的神经退行性疾病,涉及多种相互作用的神经递质通路。谷氨酸是大脑中的中枢兴奋性神经递质,在神经元活动的控制中起着至关重要的作用。已显示受损的谷氨酸体内平衡与PD密切相关。谷氨酸通过囊泡谷氨酸转运体(VGLUT)在细胞质中合成并储存在突触小泡中。在它的胞吐释放之后,谷氨酸激活谷氨酸受体(GluRs)并介导兴奋性神经传递。而谷氨酸通过兴奋性氨基酸转运蛋白(EAAT)迅速去除,以维持其相对较低的细胞外浓度并防止兴奋性毒性。GluRs和EAATs在PD病理生理学中的参与已被广泛研究,但对VGLUTs在PD中的作用知之甚少。在这次审查中,我们强调了VGLUTs在神经递质和突触通信中的作用,以及PD中谷氨酸传递和VGLUTs水平的大量变化。其中,VGLUTs表达水平和功能的适应性变化可能在PD的兴奋性损伤中起关键作用,和VGLUTs被认为是PD的新的潜在治疗靶点。
    Parkinson\'s disease (PD) is a common neurodegenerative disease implicated in multiple interacting neurotransmitter pathways. Glutamate is the central excitatory neurotransmitter in the brain and plays critical influence in the control of neuronal activity. Impaired Glutamate homeostasis has been shown to be closely associated with PD. Glutamate is synthesized in the cytoplasm and stored in synaptic vesicles by vesicular glutamate transporters (VGLUTs). Following its exocytotic release, Glutamate activates Glutamate receptors (GluRs) and mediates excitatory neurotransmission. While Glutamate is quickly removed by excitatory amino acid transporters (EAATs) to maintain its relatively low extracellular concentration and prevent excitotoxicity. The involvement of GluRs and EAATs in the pathophysiology of PD has been widely studied, but little is known about the role of VGLUTs in the PD. In this review, we highlight the role of VGLUTs in neurotransmitter and synaptic communication, as well as the massive alterations in Glutamate transmission and VGLUTs levels in PD. Among them, adaptive changes in the expression level and function of VGLUTs may exert a crucial role in excitatory damage in PD, and VGLUTs are considered as novel potential therapeutic targets for PD.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    脑缺血是世界上死亡和长期残疾的主要原因之一。大脑血液供应的中断是许多病理事件的直接刺激。缺血发作后谷氨酸(Glu)的大量囊泡释放诱导兴奋性毒性,这是对神经元的强烈压力。用Glu加载突触前囊泡是谷氨酸能神经传递的第一步。囊泡谷氨酸转运蛋白1、2和3(VGLUT1、2和3)是参与用Glu填充突触前囊泡的主要参与者。VGLUT1和VGLUT2主要在谷氨酸能神经元中表达。因此,药物调节预防缺血相关脑损伤的可能性是有吸引力的。在这项研究中,我们旨在确定局灶性脑缺血对大鼠VGLUT1和VGLUT2时空表达的影响。接下来,我们研究了芝加哥天蓝6B(CSB6B)抑制VGLUT对Glu释放和卒中结局的影响.将CSB6B预处理对梗死体积和神经功能缺损的影响与缺血预处理的参考模型进行比较。这项研究的结果表明,缺血在缺血发作后3天上调了大脑皮层和背侧纹状体中VGLUT1的表达。缺血后24h和3天,背侧纹状体和大脑皮质中VGLUT2的表达升高,分别。微透析显示,用CSB6B预处理可显着降低细胞外Glu浓度。总之,这项研究表明,抑制VGLUTs可能是未来有希望的治疗策略.
    Brain ischemia is one of the leading causes of death and long-term disability in the world. Interruption of the blood supply to the brain is a direct stimulus for many pathological events. The massive vesicular release of glutamate (Glu) after ischemia onset induces excitotoxicity, which is a potent stress on neurons. Loading of presynaptic vesicles with Glu is the first step of glutamatergic neurotransmission. Vesicular glutamate transporters 1, 2, and 3 (VGLUT1, 2, and 3) are the main players involved in filling presynaptic vesicles with Glu. VGLUT1 and VGLUT2 are expressed mainly in glutamatergic neurons. Therefore, the possibility of pharmacological modulation to prevent ischemia-related brain damage is attractive. In this study, we aimed to determine the effect of focal cerebral ischemia on the spatiotemporal expression of VGLUT1 and VGLUT2 in rats. Next, we investigated the influence of VGLUT inhibition with Chicago Sky Blue 6B (CSB6B) on Glu release and stroke outcome. The effect of CSB6B pretreatment on infarct volume and neurological deficit was compared with a reference model of ischemic preconditioning. The results of this study indicate that ischemia upregulated the expression of VGLUT1 in the cerebral cortex and in the dorsal striatum 3 days after ischemia onset. The expression of VGLUT2 was elevated in the dorsal striatum and in the cerebral cortex 24 h and 3 days after ischemia, respectively. Microdialysis revealed that pretreatment with CSB6B significantly reduced the extracellular Glu concentration. Altogether, this study shows that inhibition of VGLUTs might be a promising therapeutic strategy for the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷氨酸是大脑中主要的兴奋性神经递质,在生理和病理神经元功能中起着至关重要的作用。在哺乳动物中,在缺氧条件下,谷氨酸会引起有害的兴奋毒性作用。相比之下,Trachemysscripta,淡水龟,是最耐缺氧的动物之一,能够在没有氧气的情况下存活几个月。因此,已经研究了海龟,以评估它们在缺氧条件下使用的神经保护策略的分子机制,比如保持低水平的谷氨酸,增加腺苷和GABA,上调热休克蛋白,并下调KATP通道。这些海龟脑的缺氧耐受机制可用于寻找人类谷氨酸能神经系统疾病的治疗剂,例如由于缺血引起的脑损伤或脑中风。尽管谷氨酸作为神经递质和乌龟作为理想的研究模型的重要性,乌龟大脑中的谷氨酸能回路仍未被描述,而在哺乳动物和鸟类大脑中对它们进行了充分的研究。在爬行动物中,特别是在乌龟的大脑中,已经通过检查囊泡谷氨酸转运蛋白(VGLUTs)的表达来鉴定谷氨酸能神经元。在大脑的某些区域,一些离子型谷氨酸受体(GluRs)已经进行了免疫组织化学研究,暗示有谷氨酸能目标区域。根据文献中提供的这些谷氨酸相关分子的表达模式和乌龟大脑的纤维连接数据,可以澄清许多候选谷氨酸能回路,比如嗅觉电路,海马-间隔通路,皮质纹状体通路,视觉通路,听觉通路,和颗粒细胞-浦肯野细胞途径。这篇综述总结了龟脑皮层中可能的谷氨酸能途径和谷氨酸能神经元的分布,并将其与鸟类和哺乳动物的大脑进行了比较。谷氨酸能途径的综合知识是乌龟大脑进一步功能研究的基础,这将提供对不同物种谷氨酸调节的生理和病理机制以及神经回路的见解。
    Glutamate acts as the main excitatory neurotransmitter in the brain and plays a vital role in physiological and pathological neuronal functions. In mammals, glutamate can cause detrimental excitotoxic effects under anoxic conditions. In contrast, Trachemys scripta, a freshwater turtle, is one of the most anoxia-tolerant animals, being able to survive up to months without oxygen. Therefore, turtles have been investigated to assess the molecular mechanisms of neuroprotective strategies used by them in anoxic conditions, such as maintaining low levels of glutamate, increasing adenosine and GABA, upregulating heat shock proteins, and downregulating K ATP channels. These mechanisms of anoxia tolerance of the turtle brain may be applied to finding therapeutics for human glutamatergic neurological disorders such as brain injury or cerebral stroke due to ischemia. Despite the importance of glutamate as a neurotransmitter and of the turtle as an ideal research model, the glutamatergic circuits in the turtle brain remain less described whereas they have been well studied in mammalian and avian brains. In reptiles, particularly in the turtle brain, glutamatergic neurons have been identified by examining the expression of vesicular glutamate transporters (VGLUTs). In certain areas of the brain, some ionotropic glutamate receptors (GluRs) have been immunohistochemically studied, implying that there are glutamatergic target areas. Based on the expression patterns of these glutamate-related molecules and fiber connection data of the turtle brain that is available in the literature, many candidate glutamatergic circuits could be clarified, such as the olfactory circuit, hippocampal-septal pathway, corticostriatal pathway, visual pathway, auditory pathway, and granule cell-Purkinje cell pathway. This review summarizes the probable glutamatergic pathways and the distribution of glutamatergic neurons in the pallium of the turtle brain and compares them with those of avian and mammalian brains. The integrated knowledge of glutamatergic pathways serves as the fundamental basis for further functional studies in the turtle brain, which would provide insights on physiological and pathological mechanisms of glutamate regulation as well as neural circuits in different species.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 高脂肪饮食,具有适当的蛋白质和低碳水化合物含量,众所周知的生酮饮食(KD),被认为是某些类型癫痫的有效非药物治疗选择。已经进行了一些临床前和临床研究以阐明其抗癫痫作用的机制。KD分解后产生的酮体与细胞切除抑制过程相互作用,并抑制异常的神经元放电。生成的酮体通过抑制囊泡谷氨酸转运蛋白1来减少谷氨酸释放,并通过超极化改变跨膜电位。除了它们对众所周知的癫痫致病机制的影响外,最近的一些研究表明,KD代谢物与新的神经元靶标相互作用,特别是腺苷受体,三磷酸腺苷敏感性钾通道,哺乳动物雷帕霉素靶,组蛋白脱乙酰酶,羟基羧酸受体,和含有3个炎性体的NLR家族pyrin结构域抑制癫痫发作。已经建立了KD在增强肠道微生物群中作为癫痫发作抑制的潜在机制的作用。此外,最近的一些研究结果也支持KD对癫痫相关合并症的有益作用。尽管KD在癫痫治疗中具有一些优势,它的使用也与广泛的副作用有关。低血糖,过度酮症,酸中毒,肾结石,心肌病,和其他代谢紊乱是使用KD观察到的主要不良反应。然而,在最近的一些研究中,改良的KD已经过测试,副作用更小,耐受性更好。本文综述了KD的分子机制及其在治疗癫痫及其相关合并症中的作用。
    A high-fat diet with appropriate protein and low carbohydrate content, widely known as the ketogenic diet (KD), is considered as an effective non-pharmacotherapeutic treatment option for certain types of epilepsies. Several preclinical and clinical studies have been carried out to elucidate its mechanism of antiepileptic action. Ketone bodies produced after KD\'s breakdown interact with cellular excito-inhibitory processes and inhibit abnormal neuronal firing. The generated ketone bodies decrease glutamate release by inhibiting the vesicular glutamate transporter 1 and alter the transmembrane potential by hyperpolarization. Apart from their effect on the well-known pathogenic mechanisms of epilepsy, some recent studies have shown the interaction of KD metabolites with novel neuronal targets, particularly adenosine receptors, adenosine triphosphate-sensitive potassium channel, mammalian target of rapamycin, histone deacetylase, hydroxycarboxylic acid receptors, and the NLR family pyrin domain containing 3 inflammasomes to suppress seizures. The role of KD in augmenting gut microbiota as a potential mechanism for epileptic seizure suppression has been established. Furthermore, some recent findings also support the beneficial effect of KD against epilepsy- associated comorbidities. Despite several advantages of the KD in epilepsy management, its use is also associated with a wide range of side effects. Hypoglycemia, excessive ketosis, acidosis, renal stones, cardiomyopathies, and other metabolic disturbances are the primary adverse effects observed with the use of KD. However, in some recent studies, modified KD has been tested with lesser side effects and better tolerability. The present review discusses the molecular mechanism of KD and its role in managing epilepsy and its associated comorbidities.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    谷氨酸(Glu)是哺乳动物大脑中的主要兴奋性递质。但是,我们对这种适应的进化史知之甚少,首先包括选择l-谷氨酸作为信号分子。这里,我们使用比较代谢组学和基因组数据重建谷氨酸能信号的谱系.Glu介导的通讯的起源可以追溯到原始的氮和碳代谢途径。L-Glu的多功能化学将该分子置于细胞生物化学的十字路口,成为最丰富的代谢物之一。从那里,创新成倍增加。许多应激因素或损伤可增加细胞外谷氨酸浓度,这导致了模块化分子系统的发展,以快速检测细菌和古细菌。已经在真核生物中鉴定了超过20个进化上不同的离子型谷氨酸受体(iGluR)家族。iGluR的结构域组成与真核生物中多细胞的起源相关。尽管L-Glu被招募为早期分支后生动物的神经肌肉递质,它主要是非神经元信使,谷氨酸能突触有可能不止一次进化。此外,无脊椎动物谷氨酸能突触的分子分泌复杂性(例如,Aplysia)可以超过脊椎动物。比较基因组学还揭示了跨后生动物的iGluR的15个亚家族。然而,这种祖先的多样性大部分在脊椎动物谱系中消失了,保存AMPA,Kainate,Delta,和NMDA受体。皮质区域中谷氨酸突触的广泛扩展可能与复杂大脑的代谢需求增强以及模块化神经元集合中Glu信号的分隔化有关。
    Glutamate (Glu) is the primary excitatory transmitter in the mammalian brain. But, we know little about the evolutionary history of this adaptation, including the selection of l-glutamate as a signaling molecule in the first place. Here, we used comparative metabolomics and genomic data to reconstruct the genealogy of glutamatergic signaling. The origin of Glu-mediated communications might be traced to primordial nitrogen and carbon metabolic pathways. The versatile chemistry of L-Glu placed this molecule at the crossroad of cellular biochemistry as one of the most abundant metabolites. From there, innovations multiplied. Many stress factors or injuries could increase extracellular glutamate concentration, which led to the development of modular molecular systems for its rapid sensing in bacteria and archaea. More than 20 evolutionarily distinct families of ionotropic glutamate receptors (iGluRs) have been identified in eukaryotes. The domain compositions of iGluRs correlate with the origins of multicellularity in eukaryotes. Although L-Glu was recruited as a neuro-muscular transmitter in the early-branching metazoans, it was predominantly a non-neuronal messenger, with a possibility that glutamatergic synapses evolved more than once. Furthermore, the molecular secretory complexity of glutamatergic synapses in invertebrates (e.g., Aplysia) can exceed their vertebrate counterparts. Comparative genomics also revealed 15+ subfamilies of iGluRs across Metazoa. However, most of this ancestral diversity had been lost in the vertebrate lineage, preserving AMPA, Kainate, Delta, and NMDA receptors. The widespread expansion of glutamate synapses in the cortical areas might be associated with the enhanced metabolic demands of the complex brain and compartmentalization of Glu signaling within modular neuronal ensembles.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

       PDF(Pubmed)

  • 文章类型: Journal Article
    帕金森病(Parkinson’sdisease,PD)是中老年人常见的神经退行性疾病。目前,尚未开发出治疗PD的有效药物。尽管存在多种药物用于PD的对症治疗,它们都有强烈的副作用。大多数关于PD的研究主要集中在多巴胺能神经元上。这篇综述强调了谷氨酸转运蛋白(GLTs)的功能,包括兴奋性氨基酸转运蛋白(EAAT)和囊泡谷氨酸转运蛋白(VGLUTs),在PD的发展过程中。此外,利用生物信息学,我们比较了PD患者和健康对照者扣带回中不同类型谷氨酸转运体基因的表达。更重要的是,我们认为谷氨酸转运体的功能作用可能对PD的治疗有益.总之,VGLUTs和EAATs可能是治疗PD的潜在靶点。VGLUTs和EAATs可以作为临床药物靶点取得较好的疗效。通过这篇评论文章,我们希望未来的研究人员能够改善PD患者的病情。
    Parkinson\'s disease (PD) is a common neurodegenerative disease in middle-aged and elderly individuals. At present, no effective drug has been developed to treat PD. Although a variety of drugs exist for the symptomatic treatment of PD, they all have strong side effects. Most studies on PD mainly focus on dopaminergic neurons. This review highlights the function of glutamic acid transporters (GLTs), including excitatory amino acid transporters (EAATs) and vesicular glutamate transporters (VGLUTs), during the development of PD. In addition, using bioinformatics, we compared the expression of different types of glutamate transporter genes in the cingulate gyrus of PD patients and healthy controls. More importantly, we suggest that the functional roles of glutamate transporters may prove beneficial in the treatment of PD. In summary, VGLUTs and EAATs may be potential targets in the treatment of PD. VGLUTs and EAATs can be used as clinical drug targets to achieve better efficacy. Through this review article, we hope to enable future researchers to improve the condition of PD patients.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号