Vaccinology

疫苗学
  • 文章类型: Journal Article
    结构疫苗学在通过免疫原性抗原的高通量筛选加快疫苗设计方面至关重要。利用抗原和免疫细胞受体的结构和功能特征,该方法利用蛋白质结构比较来确定关键致病成分中的保守模式.分子建模技术,包括同源建模和分子对接,分析特定的三维(3D)结构和蛋白质相互作用,并提供对疫苗候选物和靶蛋白之间的3D相互作用和结合亲和力的有价值的见解。在这次审查中,我们深入研究了各种免疫信息学和分子建模工具的利用,以简化针对冠状病毒病2019变体的广泛保护性疫苗的开发.结构疫苗学显着增强了我们对宿主和病原体之间分子相互作用的理解。通过加快开发有效和有针对性的疫苗的步伐,特别是针对快速突变的严重急性呼吸道综合症冠状病毒2和其他流行的传染病,这种方法处于推进免疫策略的最前沿。计算技术和结构见解的结合不仅有助于识别潜在的候选疫苗,而且有助于疫苗的合理设计,培养更有效和有针对性的方法来对抗传染病。
    Structural vaccinology is pivotal in expediting vaccine design through high-throughput screening of immunogenic antigens. Leveraging the structural and functional characteristics of antigens and immune cell receptors, this approach employs protein structural comparison to identify conserved patterns in key pathogenic components. Molecular modeling techniques, including homology modeling and molecular docking, analyze specific three-dimensional (3D) structures and protein interactions and offer valuable insights into the 3D interactions and binding affinity between vaccine candidates and target proteins. In this review, we delve into the utilization of various immunoinformatics and molecular modeling tools to streamline the development of broad-protective vaccines against coronavirus disease 2019 variants. Structural vaccinology significantly enhances our understanding of molecular interactions between hosts and pathogens. By accelerating the pace of developing effective and targeted vaccines, particularly against the rapidly mutating severe acute respiratory syndrome coronavirus 2 and other prevalent infectious diseases, this approach stands at the forefront of advancing immunization strategies. The combination of computational techniques and structural insights not only facilitates the identification of potential vaccine candidates but also contributes to the rational design of vaccines, fostering a more efficient and targeted approach to combatting infectious diseases.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Vaccination against bacteria offers its share of challenges, and important progress has been made in recent years. Conventional vaccinology has protected poultry for decades with killed and attenuated bacterial vaccines. Because of the limitations of these vaccines, and given the latest technological advances, other types of vaccines were developed using various strategies. New vaccines are also being commercialized using viral or bacterial recombinant vectors or in the form of subunit vaccines developed by a genomic approach and bioinformatics analyses. As bacteria are forever-evolving microorganisms, there is no doubt that vaccine strategies preventing bacterial diseases will also evolve and that new generations of vaccines are yet to come.
    Estudio recapitulativo- Evolución de las vacunas bacterianas: de Pasteur a la genómica. La vacunación contra bacterias ha presentado una serie de desafíos y en los últimos años se han logrado avances importantes. La vacunología convencional ha brindado protección a la avicultura comercial durante décadas con vacunas bacterianas muertas y atenuadas. Debido a las limitaciones de estas vacunas y considerando los últimos avances tecnológicos, se han desarrollado otros tipos de vacunas utilizando diversas estrategias. También se están comercializando nuevas vacunas utilizando vectores recombinantes virales o bacterianos o en forma de vacunas subunitarias desarrolladas mediante un enfoque genómico y por análisis bioinformáticos. Como las bacterias son microorganismos en constante evolución, no hay duda de que las estrategias de vacunación que previenen las enfermedades bacterianas también evolucionarán y que aún están por llegar nuevas generaciones de vacunas.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    RNA药物代表了治疗和预防具有全球意义的重大疾病的范式转变。例如,传染病。针对严重急性呼吸道综合症冠状病毒2(SARS-CoV-2)的非常成功的信使RNA(mRNA)疫苗在2019年冠状病毒大流行期间以创纪录的速度开发。其结果是疫苗开发时间大大缩短,结合适应性使RNA疫苗技术对传染病和大流行防备极具吸引力。这里,我们回顾了基于不同RNA模式的传染病RNA疫苗的设计和交付的最新技术,包括线性mRNA,自扩增RNA,反式扩增RNA,和环状RNA。我们概述了用于传染病的RNA疫苗的临床管道,并提出分析程序,这对于表征质量属性和保证其质量至关重要,我们讨论了使用RNA疫苗对抗SARS-CoV-2以外的病原体的未来前景。
    RNA medicines represent a paradigm shift in treatment and prevention of critical diseases of global significance, e.g., infectious diseases. The highly successful messenger RNA (mRNA) vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were developed at record speed during the coronavirus disease 2019 pandemic. A consequence of this is exceptionally shortened vaccine development times, which in combination with adaptability makes the RNA vaccine technology highly attractive against infectious diseases and for pandemic preparedness. Here, we review state of the art in the design and delivery of RNA vaccines for infectious diseases based on different RNA modalities, including linear mRNA, self-amplifying RNA, trans-amplifying RNA, and circular RNA. We provide an overview of the clinical pipeline of RNA vaccines for infectious diseases, and present analytical procedures, which are paramount for characterizing quality attributes and guaranteeing their quality, and we discuss future perspectives for using RNA vaccines to combat pathogens beyond SARS-CoV-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MicroRNAs(miRNAs)已经成为疫苗学领域的重要工具,为疫苗开发提供了新的方法。这项研究调查了miRNA在先进疫苗开发中的潜力,重点是它们如何调节免疫反应和控制病毒复制。我们研究miRNAs的分子特征,比如它们引导转录后调控mRNA的能力,从而调节基因在不同组织和细胞中的表达。利用这种特性来开发组织特异性的减毒活疫苗,提高安全性和免疫原性。该综述强调了使用miRNA靶向疫苗对抗流感病毒等病毒的最新进展,脊髓灰质炎病毒,蜱传脑炎病毒,证明它们在特定组织中的复制减弱,同时保持免疫原性。我们还探索了miRNA在癌症生物学中的功能,通过靶向肿瘤细胞中过表达的miRNAs,突出了他们开发癌症疫苗的潜力。这项工作也涵盖了开发miRNA疫苗的困难,包括交付,稳定性,脱靶效应,以及对个体化癌症治疗计划的要求。我们最后讨论了miRNA疫苗的潜力,并强调了它们将如何影响未来癌症和传染病疫苗接种技术的发展。
    MicroRNAs (miRNAs) have emerged as a significant tool in the realm of vaccinology, offering novel approaches to vaccine development. This study investigates the potential of miRNAs in the development of advanced vaccines, with an emphasis on how they regulate immune response and control viral replication. We go over the molecular features of miRNAs, such as their capacity to direct post-transcriptional regulation toward mRNAs, hence regulating the expression of genes in diverse tissues and cells. This property is harnessed to develop live attenuated vaccines that are tissue-specific, enhancing safety and immunogenicity. The review highlights recent advancements in using miRNA-targeted vaccines against viruses like influenza, poliovirus, and tick-borne encephalitis virus, demonstrating their attenuated replication in specific tissues while retaining immunogenicity. We also explored the function of miRNAs in the biology of cancer, highlighting their potential to develop cancer vaccines through targeting miRNAs that are overexpressed in tumor cells. The difficulties in developing miRNA vaccines are also covered in this work, including delivery, stability, off-target effects, and the requirement for individualized cancer treatment plans. We wrap off by discussing the potential of miRNA vaccines and highlighting how they will influence the development of vaccination techniques for cancer and infectious diseases in the future.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:jirovecii肺孢子虫是引起急性和致命性肺炎感染的最新出现的危及生命的健康问题。对于患有白血病和免疫缺陷疾病的患者来说,这是罕见的,更具传染性。因此,到目前为止还没有治疗这种感染的方法,需要开发针对这种病原体的任何治疗方法。
    方法:在这项工作中,我们使用了比较蛋白质组学,强大的免疫信息学,和反向疫苗学,通过靶向外膜蛋白和跨膜蛋白来创建针对jirovecii肺孢子虫的mRNA疫苗。使用两种肺孢子虫蛋白质组的比较消减蛋白质组学分析,选择了不同的非冗余肺孢子虫(菌株SE8)蛋白质组。基于亲水性,从该蛋白质组中选择了七个jirovecii肺孢子虫跨膜蛋白,本质,毒力,抗原性,途径相互作用,蛋白质-蛋白质网络分析,和过敏原性。
    目的:反向疫苗学方法用于预测主要组织相容性复合体(MHC)I的免疫原性和抗原表位,II和B细胞从选定的蛋白质的基础上,它们的抗原性,毒性和致敏性。将这些免疫原性表位连接在一起以构建基于mRNA的疫苗。为了增强免疫原性,合适的佐剂,接头(GPGPG,KK,和CYY),和PRDRE序列被使用。
    结果:通过Ramachandran图的预测建模和确认,我们评估了二级和三维结构。掺入佐剂RpfE以增强疫苗构建体的免疫原性(GRAVY指数:-0.271,不稳定性指数:39.53,抗原性:1.0428)。疫苗构建体的理化分析被预测为抗原性,高效,和潜在的疫苗。值得注意的是,在疫苗构建体和TLR-3/TLR-4(-1301.7kcal/mol-1和-1374.7kcal/mol-1)之间观察到强相互作用。
    结论:结果预测基于mRNA的疫苗会引发细胞和体液免疫反应,使疫苗成为对抗jirovecii肺孢子虫的潜在候选物,并且更适合用于体外分析和验证以证明其有效性。
    BACKGROUND: Pneumocystis jirovecii is the most emerging life-threating health problem that causes acute and fatal pneumonia infection. It is rare and more contagious for patients with leukemia and immune-deficiency disorders. Until now there is no treatment available for this infection therefore, it is needed to develop any treatment against this pathogen.
    METHODS: In this work, we used comparative proteomics, robust immune-informatics, and reverse vaccinology to create an mRNA vaccine against Pneumocystis jirovecii by targeting outer and transmembrane proteins. Using a comparative subtractive proteomic analysis of two Pneumocystis jirovecii proteomes, a distinct non-redundant Pneumocystis jirovecii (strain SE8) proteome was chosen. Seven Pneumocystis jirovecii transmembrane proteins were chosen from this proteome based on hydrophilicity, essentiality, virulence, antigenicity, pathway interaction, protein-protein network analysis, and allergenicity.
    OBJECTIVE: The reverse vaccinology approach was used to predict the immunogenic and antigenic epitopes of major histocompatibility complex (MHC) I, II and B-cells from the selected proteins on the basis of their antigenicity, toxicity and allergenicity. These immunogenic epitopes were linked together to construct the mRNA-based vaccine. To enhance the immunogenicity, suitable adjuvant, linkers (GPGPG, KK, and CYY), and PRDRE sequences were used.
    RESULTS: Through predictive modeling and confirmation via the Ramachandran plot, we assessed secondary and 3D structures. The adjuvant RpfE was incorporated to enhance the vaccine construct\'s immunogenicity (GRAVY index: -0.271, instability index: 39.53, antigenicity: 1.0428). The physiochemical profiling of vaccine construct was predicted it an antigenic, efficient, and potential vaccine. Notably, strong interactions were observed between the vaccine construct and TLR-3/TLR-4 (-1301.7 kcal/mol-1 and -1374.7 kcal/mol-1).
    CONCLUSIONS: The results predicted that mRNA-based vaccines trigger a cellular and humoral immune response, making the vaccine potential candidate against Pneumocystis jirovecii and it is more suitable for in-vitro analysis and validation to prove its effectiveness.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    肝吸虫O.viverrini(Opisthorchisviverrini),被忽视的热带病(NTD),大湄公河次区域(GMS)特有,主要困扰泰国东北部地区。它是人类胆管癌(CCA)的主要原因。目前,opisthorchiasis的治疗方式包括使用抗蠕虫药物吡喹酮,再感染的快速发生,迫在眉睫的耐药性威胁凸显了疫苗开发的迫切需要。“组学”技术的最新进展已被证明是此类研究的强大工具。利用通过蛋白质组学鉴定和通过免疫蛋白质组学精制的候选蛋白质,反向疫苗学(RV)为设计靶向必需抗体反应以消除寄生虫的疫苗提供了有希望的前景。基于机器学习的计算工具可以预测对B细胞表现出高结合亲和力的候选蛋白质/抗原的表位。MHCI类和II类,表明有很强的潜力引发体液和细胞介导的免疫反应。随后,这些疫苗设计可以进行群体特异性测试和对接/动力学研究,以评估效力和协同免疫原性.因此,通过免疫信息学完善蛋白质组学数据,并利用计算工具产生抗原特异性靶标进行试验,为疫苗开发提供了一种靶向且有效的方法,该方法适用于寄生虫感染的所有领域.在这次审查中,我们使用O.viverrini寄生虫的组学模式深入研究了战略性抗原选择过程,并提出了疫苗设计的创新框架.我们利用组学技术彻底改变疫苗开发,有希望的加速发现和简化的临床前和临床评估。
    The liver fluke O. viverrini (Opisthorchis viverrini), a neglected tropical disease (NTD), endemic to the Great Mekong Subregion (GMS), mainly afflicts the northeastern region of Thailand. It is a leading cause of cholangiocarcinoma (CCA) in humans. Presently, the treatment modalities for opisthorchiasis incorporate the use of the antihelminthic drug praziquantel, the rapid occurrence of reinfection, and the looming threat of drug resistance highlight the urgent need for vaccine development. Recent advances in \"omics\" technologies have proven to be a powerful tool for such studies. Utilizing candidate proteins identified through proteomics and refined via immunoproteomics, reverse vaccinology (RV) offers promising prospects for designing vaccines targeting essential antibody responses to eliminate parasite. Machine learning-based computational tools can predict epitopes of candidate protein/antigens exhibiting high binding affinities for B cells, MHC classes I and II, indicating strong potential for triggering both humoral and cell-mediated immune responses. Subsequently, these vaccine designs can undergo population-specific testing and docking/dynamics studies to assess efficacy and synergistic immunogenicity. Hence, refining proteomics data through immunoinformatics and employing computational tools to generate antigen-specific targets for trials offers a targeted and efficient approach to vaccine development that applies to all domains of parasite infections. In this review, we delve into the strategic antigen selection process using omics modalities for the O. viverrini parasite and propose an innovative framework for vaccine design. We harness omics technologies to revolutionize vaccine development, promising accelerated discoveries and streamlined preclinical and clinical evaluations.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    非洲,拥有世界第二大人口,约13亿,在满足医疗需求方面面临重大挑战,特别是在获得高质量的医疗保健服务和产品方面。非洲大陆面临着新出现的传染病的持续袭击,加剧了其已经脆弱的公共卫生基础设施的压力。COVID-19危机凸显了建设当地疫苗生产能力和加强总体卫生基础设施的紧迫性。严重依赖进口疫苗的风险在COVID-19大流行期间暴露出来,需要培育和加强疫苗和治疗性生物制剂的本地生产。关于培训的各种举措,制造,监管事务正在进行中,这些都需要增加专门和有目的的金融投资。建立疫苗制造能力需要在培训和基础设施方面进行大量投资。本手稿研究了非洲疫苗学及相关科学的教育现状。它还概述了非洲大陆在疫苗开发和制造中满足教育需求的努力。此外,它评估了旨在加强疫苗教育和扫盲的举措,强调成功的方法和持续的挑战。通过评估取得的进展和确定剩余的障碍,这篇综述提供了非洲如何提高其疫苗制造能力以应对疫苗可预防疾病挑战的见解.
    Africa, home to the world\'s second-largest population of approximately 1.3 billion, grapples with significant challenges in meeting its medical needs, particularly in accessing quality healthcare services and products. The continent faces a continuous onslaught of emerging infectious diseases, exacerbating the strain on its already fragile public health infrastructure. The COVID-19 crisis highlighted the urgency to build local vaccine production capacity and strengthen the health infrastructure in general. The risks associated with a heavy reliance on imported vaccines were exposed during the COVID-19 pandemic, necessitating the need to nurture and strengthen the local manufacturing of vaccines and therapeutic biologics. Various initiatives addressing training, manufacturing, and regulatory affairs are underway, and these require increasing dedicated and purposeful financial investment. Building vaccine manufacturing capacity requires substantial investment in training and infrastructure. This manuscript examines the current state of education in vaccinology and related sciences in Africa. It also provides an overview of the continent\'s efforts to address educational needs in vaccine development and manufacturing. Additionally, it evaluates the initiatives aimed at strengthening vaccine education and literacy, highlighting successful approaches and ongoing challenges. By assessing the progress made and identifying the remaining obstacles, this review offers insights into how Africa can enhance its vaccine manufacturing capacity to respond to vaccine-preventable disease challenges.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    水产养殖已迅速成为发展最快的行业之一,在全球和国家战线上扩大。随着对具有高生物学价值的蛋白质的需求不断增加,水产养殖业已成为最有效的动物生产形式之一,通过提供近一半的供人类消费的水产食品,证明是全球粮食生产的重要组成部分。就像在经典的动物生产中一样,预防疾病是与严重的经济和环境影响相关的持久挑战。然而,最近见证了水产养殖疫苗开发的显着进步,为挑战有弹性的水产养殖生产的持续健康相关问题提供可持续的解决方案。这些进步的特点是在提高物种特异性精度方面取得了突破,改进疫苗输送系统,以及疫苗研发的创新,随着纳米技术的出现,生物技术,以及经济学时代的人工智能。本文的目的是评估围绕水产养殖疫苗学的最新发展和里程碑,并提供最新的优势概述,弱点,机遇,以及该部门的威胁,通过纳入和比较讨论跨越广泛主题的各种扩散进展,包括新兴的疫苗技术,创新的交付方式,对新型佐剂的见解,和水产养殖部门的寄生虫疫苗开发。
    Aquaculture has rapidly emerged as one of the fastest growing industries, expanding both on global and on national fronts. With the ever-increasing demand for proteins with a high biological value, the aquaculture industry has established itself as one of the most efficient forms of animal production, proving to be a vital component of global food production by supplying nearly half of aquatic food products intended for human consumption. As in classic animal production, the prevention of diseases constitutes an enduring challenge associated with severe economic and environmental repercussions. Nevertheless, remarkable strides in the development of aquaculture vaccines have been recently witnessed, offering sustainable solutions to persistent health-related issues challenging resilient aquaculture production. These advancements are characterized by breakthroughs in increased species-specific precision, improved vaccine-delivery systems, and innovations in vaccine development, following the recent advent of nanotechnology, biotechnology, and artificial intelligence in the -omics era. The objective of this paper was to assess recent developments and milestones revolving around aquaculture vaccinology and provide an updated overview of strengths, weaknesses, opportunities, and threats of the sector, by incorporating and comparatively discussing various diffuse advances that span across a wide range of topics, including emerging vaccine technologies, innovative delivery methods, insights on novel adjuvants, and parasite vaccine development for the aquaculture sector.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在COVID-19大流行期间,mRNA疫苗的临床成功激发了提高mRNA疫苗免疫原性的新兴方法。其中,用于改善免疫细胞靶向的抗原融合蛋白设计已被证明可以增强针对小抗原靶标的体液免疫。
    这项研究表明,SARS-CoV-2受体结合域(RBD)与补体成分3b(C3b,残基727-767)配体可以通过抗原靶向补体受体1(CR1)来提高mRNA疫苗的免疫原性。我们通过蛋白质印迹和免疫荧光分析确认疫苗的抗原性和对特定受体的靶向能力。此外,小鼠免疫研究有助于研究抗体反应。
    使用SARS-CoV-2OmicronRBD抗原,我们比较了表达RBD融合蛋白的mRNA疫苗制剂与小鼠C3b肽(RBD-mC3),RBD与小鼠Fc的融合蛋白(RBD-Fc),和野生型RBD。我们的结果证实了RBD-mC3的适当抗原性和正常功能。在验证不同疫苗制剂的可比抗原表达后,融合抗原的受体靶向能力得到进一步证实。在小鼠免疫研究中,我们表明,虽然RBD-mC3和RBD-Fc都提高了疫苗的免疫原性,与RBD-Fc设计相比,RBD-mC3导致更持续的RBD特异性滴度,推测是由于极简靶向配体减少了抗原转移。
    该研究证明了用于免疫细胞靶向和mRNA疫苗增强的新型基于C3b的抗原设计策略。
    UNASSIGNED: The clinical success of mRNA vaccine during the COVID-19 pandemic has inspired emerging approaches to elevate mRNA vaccine immunogenicity. Among them, antigen fusion protein designs for improved immune cell targeting have been shown to augment humoral immunity against small antigen targets.
    UNASSIGNED: This research demonstrates that SARS-CoV-2 receptor binding domain (RBD) fusion with a minimalistic peptide segment of complement component 3b (C3b, residues 727-767) ligand can improve mRNA vaccine immunogenicity through antigen targeting to complement receptor 1 (CR1). We affirm vaccines\' antigenicity and targeting ability towards specific receptors through Western blot and immunofluorescence assay. Furthermore, mice immunization studies help the investigation of the antibody responses.
    UNASSIGNED: Using SARS-CoV-2 Omicron RBD antigen, we compare mRNA vaccine formulations expressing RBD fusion protein with mouse C3b peptide (RBD-mC3), RBD fusion protein with mouse Fc (RBD-Fc), and wild-type RBD. Our results confirm the proper antigenicity and normal functionality of RBD-mC3. Upon validating comparable antigen expression by the different vaccine formulations, receptor-targeting capability of the fusion antigens is further confirmed. In mouse immunization studies, we show that while both RBD-mC3 and RBD-Fc elevate vaccine immunogenicity, RBD-mC3 leads to more sustained RBD-specific titers over the RBD-Fc design, presumably due to reduced antigenic diversion by the minimalistic targeting ligand.
    UNASSIGNED: The study demonstrates a novel C3b-based antigen design strategy for immune cell targeting and mRNA vaccine enhancement.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    汉坦病毒是属于布尼亚病毒科的单链RNA病毒,在世界范围内引起汉坦病毒心肺综合征(HCPS)和肾综合征出血热(HFRS)。目前,没有有效的疫苗接种或治疗方法可用于治疗汉坦病毒,因此,迫切需要研究以制定该疾病的治疗方法。计算疫苗设计目前是一个高度准确的,设计针对不同疾病的有效疫苗的时间和成本效益方法。在目前的研究中,我们入围了高抗原蛋白,即,信封,和来自汉坦病毒蛋白质组的核蛋白,并经过高抗原表位的选择,设计下一代多表位疫苗构建体。一种高度抗原性和稳定的佐剂与免疫表位(T细胞,B细胞,和HTL)来设计Env-Vac,NP-Vac,和Com-Vac结构,表现出更强的抗原性,非过敏性,和良好的理化性质。此外,预测了3D结构,对接分析揭示了与人Toll样受体3(TLR3)的强相互作用以启动免疫级联反应.为Env-Vac计算的总自由能,NP-Vac,Com-Vac为-50.02千卡/摩尔,-24.13kcal/mol,和-62.30千卡/摩尔,分别。硅克隆,结果表明Env-Vac的CAI值,NP-Vac,和Com-Vac分别为0.957、0.954和0.956,而其相应的GC含量为65.1%,64.0%,和63.6%。此外,三剂量注射的免疫模拟结果释放了显著水平的IgG,IgM,白细胞介素,和细胞因子,以及随着时间的推移抗原清除,在接受疫苗和两次加强剂量后。我们针对汉坦病毒的疫苗被发现具有高度免疫原性,诱导强大的免疫反应,需要临床使用的实验验证。
    Hantaviruses are single-stranded RNA viruses belonging to the family Bunyaviridae that causes hantavirus cardiopulmonary syndrome (HCPS) and hemorrhagic fever with renal syndrome (HFRS) worldwide. Currently, there is no effective vaccination or therapy available for the treatment of hantavirus, hence there is a dire need for research to formulate therapeutics for the disease. Computational vaccine designing is currently a highly accurate, time and cost-effective approach for designing effective vaccines against different diseases. In the current study, we shortlisted highly antigenic proteins i.e., envelope, and nucleoprotein from the proteome of hantavirus and subjected to the selection of highly antigenic epitopes to design of next-generation multi-epitope vaccine constructs. A highly antigenic and stable adjuvant was attached to the immune epitopes (T-cell, B-cell, and HTL) to design Env-Vac, NP-Vac, and Com-Vac constructs, which exhibit stronger antigenic, non-allergenic, and favorable physiochemical properties. Moreover, the 3D structures were predicted and docking analysis revealed robust interactions with the human Toll-like receptor 3 (TLR3) to initiate the immune cascade. The total free energy calculated for Env-Vac, NP-Vac, and Com-Vac was -50.02 kcal/mol, -24.13 kcal/mol, and -62.30 kcal/mol, respectively. In silico cloning, results demonstrated a CAI value for the Env-Vac, NP-Vac, and Com-Vac of 0.957, 0.954, and 0.956, respectively, while their corresponding GC contents were 65.1%, 64.0%, and 63.6%. In addition, the immune simulation results from three doses of shots released significant levels of IgG, IgM, interleukins, and cytokines, as well as antigen clearance over time, after receiving the vaccine and two booster doses. Our vaccines against Hantavirus were found to be highly immunogenic, inducing a robust immune response that demands experimental validation for clinical usage.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

公众号