Vacancy engineering

空缺工程
  • 文章类型: Journal Article
    开发高效且稳定的阳极催化剂层(CL)对于促进阴离子交换膜(AEM)水电解槽的实际应用至关重要。在这里,提出了一种由富氧空位的CoCrOx纳米片和分散的FeNi层状双氢氧化物(LDH)组成的分层纳米片阵列,以调节电子结构并增加电导率,以提高析氧反应(OER)的固有活性。CoCrOx/NiFeLDH电极需要205mV的过电位才能达到100mAcm-2的电流密度,并且它们在7000小时内在1000mAcm-2处表现出长期稳定性。值得注意的是,通过将CoCrOx/NiFeLDH转移到AEM的表面,在膜电极组件(MEA)制造中引入了突破性策略,形成3D互锁阳极CL,显着降低整体电池电阻和增强液/气传质。在AEM水电解中,它具有1.55Vcell的超低电池电压,以在1MKOH中实现1.0Acm-2的电流密度,优于国家的最先进的Pt/C//IrO2。这项工作为先进的碱性水电解技术在单电池水平上设计高效电催化剂提供了一种有价值的方法。
    Developing a high-efficiency and stable anode catalyst layer (CL) is crucial for promoting the practical applications of anion exchange membrane (AEM) water electrolyzers. Herein, a hierarchical nanosheet array composed of oxygen vacancy-enriched CoCrOx nanosheets and dispersed FeNi layered double hydroxide (LDH) is proposed to regulate the electronic structure and increase the electrical conductivity for improving the intrinsic activity of the oxygen evolution reaction (OER). The CoCrOx/NiFe LDH electrodes require an overpotential of 205 mV to achieve a current density of 100 mA cm-2, and they exhibit long-term stability at 1000 mA cm-2 over 7000 h. Notably, a breakthrough strategy is introduced in membrane electrode assembly (MEA) fabrication by transferring CoCrOx/NiFe LDH to the surface of an AEM, forming a 3D-interlocked anode CL, significantly reducing the overall cell resistance and enhancing the liquid/gas mass transfer. In AEM water electrolysis, it exhibits an ultralow cell voltage of 1.55 Vcell to achieve a current density of 1.0 A cm-2 in 1 M KOH, outperforming the state-of-the-art Pt/C//IrO2. This work provides a valuable approach to designing high-efficiency electrocatalysts at the single-cell level for advanced alkaline water electrolysis technologies.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    在这里,通过钴金属有机骨架(Co-MOF)的原位碳化-硒化过程合成了一种具有丰富硒空位的新型异质CoSe2-x@NC材料。获得的CoSe2-x@NC具有独特的电子结构和丰富的活性位点,能活化过氧单硫酸盐(PMS)降解卡马西平(CBZ),具有优越的催化性能和稳定性。淬火实验和EPR测试表明,SO4•-是CBZ降解的主要反应氧化物质(ROSs)。重要的是,系统的电化学测试和理论计算表明,SO4•-的主导作用归因于CoSe2-x@NC中大量硒空位的存在,可以调节CoSe2-x@NC中Co原子的电子云密度,以改善PMS吸附并促进过渡金属氧化还原对(Co3/Co2)的转化。这项工作提供了一种通过基于PMS的高级氧化工艺(AOPs)中的缺陷工程来提高CoSe2的活性和稳定性的简便方法。
    Herein, a new heterogeneous CoSe2-x@NC material with abundant selenium vacancies is synthesized via an in-situ carbonization-selenization process from cobaltic metal organic framework (Co-MOF). The obtained CoSe2-x@NC has a unique electronic structure and rich active sites, which can activate peroxymonosulfate (PMS) to degrade carbamazepine (CBZ) with superior catalytic performance and stability. The quenchingexperiments and EPR test show that SO4•- is the dominant reactive oxidation species (ROSs) for CBZ degradation. Significantly, systemic electrochemical tests and theoretical calculations illustrated that the dominant role of SO4•- is attributed to the existence of abundant selenium vacancies in CoSe2-x@NC, which can adjust the density of electron cloud of the Co atoms in CoSe2-x@NC to improve the PMS adsorption and promoting the conversion of transition metallic redox pairs (Co3+/Co2+). This work provides a facile way to improve the activity and stability of CoSe2 by defect engineering in the PMS based advanced oxidation process (AOPs).
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    质子交换膜水电解槽(PEMWE)的发展仍然受到昂贵的成本和基于铱(Ir)的析氧反应(OER)催化剂的稀缺性的限制。这项工作提出了一种通过前体雾化和快速焦耳加热方法合成的新型催化剂,成功地将铱原子掺杂到多价钨共混物中(W0,W5+,W6+)基于钛基底。不饱和氧化钨(W5+,W6)重建了催化剂表面的电子结构,这导致了低价态铱物种,避免铱的过度氧化和加速催化动力学。同时,金属钨(W0)提高了催化剂的导电性,保证了氧空位的稳定存在。TiIrWOx在酸性OER催化中具有优异的性能,只需要181mV的过电位来驱动10.0mAcm-2,并在300mV的超电势下表现出753AgIr-1的高质量活性。与商业IrO2相比,以TiIrWOx为阳极电催化剂的膜电极组件(MEA)可将Ir消耗量降低>60%,它可以在1.0Acm-2的电流密度下运行超过120小时。
    The development of the proton exchange membrane water electrolyzer (PEMWE) is still limited by the prohibitive cost and scarcity of iridium (Ir)-based oxygen evolution reaction (OER) catalyst. This work presents a novel catalyst synthesized by precursor-atomization and rapid joule-heating method, successfully doping iridium atoms into polyvalent tungsten blends (W0, W5+, W6+) based on titanium substrate. The vacancy engineering of unsaturated tungsten oxide (W5+, W6+) reconstructs the electronic structure of the catalyst surface, which resulting in the low-valence state iridium species, avoiding excessive oxidation of iridium and accelerating the catalytic kinetics. Meanwhile, metallic tungsten (W0) improves the conductivity of catalyst and guarantees the stable existence of oxygen vacancy. The TiIrWOx possesses excellent performance in acidic OER catalysis, requiring overpotential of only 181 mV to drive 10.0 mA cm-2, and exhibiting a high mass activity of 753 A gIr -1 at an overpotential of 300 mV. The membrane electrode assembly (MEA) with TiIrWOx as anode electrocatalyst can reduce the Ir consumption amount by >60% compared to commercial IrO2, and it can operated over 120 h at a current density of 1.0 A cm-2.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    杂元素掺杂和空位工程的结合将被开发为设计用于析氢反应(HER)的优异电催化剂的最有效策略之一。在这里,证明了与Co空位耦合的N掺杂新策略可以精确激活与Co空位相邻的惰性S原子,并显着改善CoS的电荷转移以加速HER。在这个战略中,N掺杂有利于Co空位的存在,由于它们的形成能量大大降低。开发的策略实现了S3p轨道的升移,然后是S3py和H1s轨道之间的更多重叠,这导致有利的氢原子吸附自由能变化(ΔGH),以激活惰性S原子作为新生催化位点。此外,这种策略协同降低了CoS的带隙,由此获得的电催化剂获得令人满意的导电性和低的电荷转移电阻。在碱性环境中,在10.0mAcm-2时,HER活性为-89.0mV,这项工作提供了一种新的方法来解锁惰性位点和显着改善电荷转移到钴基材料高效HER。
    The combination of hetero-elemental doping and vacancy engineering will be developed as one of the most efficient strategies to design excellent electrocatalysts for hydrogen evolution reaction (HER). Herein, a novel strategy for N-doping coupled with Co-vacancies is demonstrated to precisely activate inert S atoms adjacent to Co-vacancies and significantly improve charge transfer for CoS toward accelerating HER. In this strategy, N-doping favors the presence of Co-vacancies, due to greatly decreasing their formation energy. The as-developed strategy realizes the upshift of S 3p orbitals followed by more overlapping between S 3py and H 1s orbitals, which results in the favorable hydrogen atom adsorption free energy change (ΔGH ) to activate inert S atoms as newborn catalytical sites. Besides, this strategy synergistically decreases the bandgap of CoS, thereby achieving satisfactory electrical conductivity and low charge-transfer resistance for the as-obtained electrocatalysts. With an excellent HER activity of -89.0 mV at 10.0 mA cm-2 in alkaline environments, this work provides a new approach to unlocking inert sites and significantly improving charge transfer toward cobalt-based materials for highly efficient HER.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Cu9S5作为一种新型的p型半导体,具有较高的空穴浓度和优越的导电性,其生物应用在很大程度上仍未被开发。我们最近的工作鼓励Cu9S5在没有光的情况下具有类似酶的抗菌活性,这可以进一步增强近红外(NIR)抗菌性能。此外,空位工程可以调节纳米材料的电子结构,从而优化其光催化抗菌活性。这里,我们设计了两种不同的原子排列,具有通过正电子an灭寿命光谱(PALS)确定的Cu9S5纳米材料(CSC-4和CSC-3)的相同VCuSCu空位。以CSC-4和CSC-3为模型系统,第一次,我们研究了不同铜(Cu)空位在空位工程中的关键作用,以优化纳米材料的光催化抗菌性能。结合实验和理论的方法,CSC-3表现出更强的表面吸附物(LPS和H2O)吸收能,光生电荷载流子寿命更长(4.29ns),与CSC-4相比,反应活性能量(0.76eV)更低,从而产生丰富的·OH,以实现在NIR光照射下快速杀死耐药细菌和伤口愈合。这项工作为在原子级调节下通过空位工程有效抑制耐药细菌感染提供了新的见解。
    Cu9S5 possesses high hole concentration and potential superior electrical conductivity as a novel p-type semiconductor, whose biological applications remain largely unexploited. Encouraged by our recent work that Cu9S5 has enzyme-like antibacterial activity in the absence of light, which may further enhance the near infrared (NIR) antibacterial performance. Moreover, vacancy engineering can modulate the electronic structure of the nanomaterials and thus optimize their photocatalytic antibacterial activities. Here, we designed two different atomic arrangements with same VCuSCu vacancies of Cu9S5 nanomaterials (CSC-4 and CSC-3) determined by positron annihilation lifetime spectroscopy (PALS). Aiming at CSC-4 and CSC-3 as a model system, for the first time, we investigated the key role of different copper (Cu) vacancies positions in vacancy engineering toward optimizing the photocatalytic antibacterial properties of the nanomaterials. Combined with the experimental and theoretical approach, CSC-3 exhibited stronger absorption energy of surface adsorbate (LPS and H2O), longer lifetime of photogenerated charge carriers (4.29 ns), and lower reaction active energy (0.76 eV) than those of CSC-4, leading to the generation of abundant ·OH for attaining rapid drug-resistant bacteria killed and wound healed under NIR light irradiation. This work provided a novel insight for the effective inhibition of drug-resistant bacteria infection via vacancy engineering at the atomic-level modulation.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    非均相催化剂中的空位缺陷在过硫酸盐(PS)活化中受到广泛关注。空位缺陷可以调节金属氧化物的电子结构并产生不饱和配位位点。同时,优化了反应物在催化剂表面的吸附能。因此,催化剂和PS之间的反应能障降低,能促进催化活化,加速污染物降解。如今,氧空位(OV),氮空位(NV),硫空位(SV),硒空位(SeV)和钛空位(TiV)已被广泛研究,具有巨大的水修复潜力。到目前为止,没有关于空缺激活的过硫酸盐系统的审查报告。本文总结了类型,准备,系统地研究了PS系统中空缺的机制和应用。此外,我们提出了PS活化系统中空置工程的可能发展。预计这篇综述将有助于PS活化和污染物去除催化剂中空位的可控合成和应用。
    The vacancy defects in heterogeneous catalysts have received extensive attention for persulfate (PS) activation. Vacancy defects can tune the electronic structure of metal oxides and generate unsaturated coordination sites. Meanwhile, the adsorption energy of reactants on catalyst surface is optimized. Thereby, the reaction energy barrier between catalysts and PS decreases, which could promote catalytic activation and accelerate pollutants degradation. Nowadays, oxygen vacancy (OV), nitrogen vacancy (NV), sulfur vacancy (SV), selenium vacancy (SeV) and titanium vacancy (TiV) have been widely studied with great potential for water remediation. So far, no review was reported regarding the vacancy activated persulfate systems. This paper summarized the types, preparation, mechanism and applications of vacancy in PS systems systematically. In addition, we put forward possible development of vacancy engineering in PS activation systems. It is expected that this review will contribute to the controllable synthesis and applications of vacancies in catalysts for PS activation and contaminants removal.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有增强的氮气(N2)吸附和活化的电催化剂的设计对于促进电化学N2还原(ENR)是关键的。在这里,我们开发了一种有效的策略,通过核@壳结构的Au@SnO2纳米颗粒(NPs)的空位工程来促进N2吸附和活化以将N2电还原为氨(NH3)。我们发现,富含氧空位的超薄非晶态SnO2壳有利于吸附N2并促进N2的活化。同时金属Au核确保了良好的导电性,以加速电化学N2还原反应过程中的电子传输,协同地促进N2电还原催化。正如15N标记和对照实验所证实的那样,具有丰富氧空位的核@壳Au@无定形SnO2NPs对N2电还原表现出最佳性能,NH3产率为21.9μgh-1mg-1cat,在-0.2VRHE时法拉第效率为15.2%,超过Au@晶体SnO2NPs,单个AuNP和所有报道的用于ENR的Au基催化剂。
    The design of electrocatalysts with enhanced adsorption and activation of nitrogen (N2) is critical for boosting the electrochemical N2 reduction (ENR). Herein, we developed an efficient strategy to facilitate N2 adsorption and activation for N2 electroreduction into ammonia (NH3) by vacancy engineering of core@shell structured Au@SnO2 nanoparticles (NPs). We found that the ultrathin amorphous SnO2 shell with enriched oxygen vacancies was conducive to adsorb N2 as well as promoted the N2 activation, meanwhile the metallic Au core ensured the good electrical conductivity for accelerating electrons transport during the electrochemical N2 reduction reaction, synergistically boosting the N2 electroreduction catalysis. As confirmed by the 15N-labeling and controlled experiments, the core@shell Au@amorphous SnO2 NPs with abundant oxygen vacancies show the best performance for N2 electroreduction with the NH3 yield rate of 21.9 μg h-1 mg-1cat and faradaic efficiency of 15.2% at -0.2 VRHE, which surpass the Au@crystalline SnO2 NPs, individual Au NPs and all reported Au-based catalysts for ENR.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    由于TiO2的扩散系数和电导率较差,因此在TiO2中钠存储的速率决定过程在很大程度上取决于电极材料中发生的电荷转移。除了减少离子/电子的扩散距离外,晶格中离子/电子迁移率的增加对于电荷传输也是非常重要的。这里,提出了一种氧空位(OV)工程,该工程辅助高含量阴离子(S/Se/P)掺杂策略,以增强超快钠存储性能的电荷转移动力学。理论计算表明,OV工程引起了自发的S掺杂到TiO2相中,并实现了高掺杂剂浓度,从而在S占据的位置上实现了杂质态电子供体和电子离域,这可以在很大程度上降低Na+的迁移障碍。为了实现猜测,精心设计了高阴离子掺杂锐钛矿型TiO2/C复合材料(A-TiO2-x-S/C中S为9.82at%)。优化的A-TiO2-x-S/C阳极在5000mAg-1下具有209.6mAhg-1,具有非常高的倍率性能。当作为阳极材料应用时,组装的钠离子电容器在150Wkg-1的功率密度下提供150.1Whkg-1的超高能量密度。这项工作提供了一种实现高含量阴离子掺杂浓度的新策略,并增强了TiO2的电荷转移动力学,这为设计具有快速动力学的电极材料提供了有效的方法。
    The rate-determining process for sodium storage in TiO2 is greatly depending on charge transfer happening in the electrode materials owing to its inferior diffusion coefficient and electronic conductivity. Apart from reducing the diffusion distance of ion/electron, the increasement of ionic/electronic mobility in the crystal lattice is also very important for charge transport. Here, an oxygen vacancy (OV) engineering assisted in high-content anion (S/Se/P) doping strategy to enhance charge transfer kinetics for ultrafast sodium-storage performance is proposed. Theoretical calculations indicate that OV-engineering evokes spontaneous S doping into the TiO2 phase and achieves high dopant concentration to bring about impurity state electron donor and electronic delocalization over S occupied sites, which can largely reduce the migration barrier of Na+. To realize the speculation, high-content anion doped anatase TiO2/C composites (9.82 at% for S in A-TiO2-x-S/C) are elaborately designed. The optimized A-TiO2-x-S/C anode exhibits extraordinarily high-rate capability with 209.6 mAh g-1 at 5000 mA g-1. The assembled sodium ion capacitors deliver an ultrahigh energy density of 150.1 Wh kg-1 at a power density of 150 W kg-1 when applied as anode materials. This work provides a new strategy to realize high content anion doping concentration, and enhances the charge transfer kinetics for TiO2, which delivers an efficient approach for the design of electrode materials with fast kinetic.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    在偏共价键和共价键之间的键类型中,数百万倍的可逆转换成为通用记忆的最有前途的基础之一。由于在亚稳态中发现了转换,通过空位的重新分布从稳定状态扩展的晶体结构类别,对空位动力学行为的研究需求很大。然而,由于实验分析的困难,它仍然缺乏。在这里,通过结合对电荷密度分布的分析,对空位化学状态演变的直接观察阐明了这种行为,电导率,和晶体结构。Sb2Te3空位的位置转换由于其自身的激活代码而逐渐发生,并具有发散的能障:空位的积累触发了沿原子平面的自发滑动以减轻静电排斥。对行为的研究可以进一步应用于由Sb2Te3(2D)和GeTe(3D)子层组成的多相超晶格,代表着卓越的记忆表现,但是由于它们的复杂性,它们的运作机制仍在争论中。当Te-Te键在由构型熵增益(静电焓损失)驱动的Sb2Te3(2D)和GeTe(3D)子层之间的界面上形成物理吸附(化学吸附)时,位置切换是有利的(抑制的)。根据子层之间的界面类型,超晶格的相分为亚稳态和稳定状态,其中转换只能在亚稳态中实现。通过空位动力学行为和亚稳态对运行机制的全面理解,对空置工程的进一步研究预计在多功能材料。
    Reversible conversion over multimillion times in bond types between metavalent and covalent bonds becomes one of the most promising bases for universal memory. As the conversions have been found in metastable states, an extended category of crystal structures from stable states via redistribution of vacancies, research on kinetic behavior of the vacancies is highly in demand. However, it remains lacking due to difficulties with experimental analysis. Herein, the direct observation of the evolution of chemical states of vacancies clarifies the behavior by combining analysis on charge density distribution, electrical conductivity, and crystal structures. Site-switching of vacancies of Sb2Te3 gradually occurs with diverged energy barriers owing to their own activation code: the accumulation of vacancies triggers spontaneous gliding along atomic planes to relieve electrostatic repulsion. Studies on the behavior can be further applied to multiphase superlattices composed of Sb2Te3 (2D) and GeTe (3D) sublayers, which represent superior memory performances, but their operating mechanisms were still under debate due to their complexity. The site-switching is favorable (suppressed) when Te-Te bonds are formed as physisorption (chemisorption) over the interface between Sb2Te3 (2D) and GeTe (3D) sublayers driven by configurational entropic gain (electrostatic enthalpic loss). Depending on the type of interfaces between sublayers, phases of the superlattices are classified into metastable and stable states, where the conversion could only be achieved in the metastable state. From this comprehensive understanding on the operating mechanism via kinetic behaviors of vacancies and the metastability, further studies toward vacancy engineering are expected in versatile materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    铜基纳米材料由于其优异的性能和良好的生物相容性而被开发用于缓解抗生素耐药性问题。纳米材料中的缺陷对提高光催化性能具有重要作用。在这里,合成了两个具有主要VCuSCu和VCuSS空位的CuS纳米球(分别缩写为CuS和CuS-T150),其特征在于正电子an没光谱。实验和理论计算结果相结合,表明CuS-T150具有优异的抗菌性能,对大肠杆菌(E.大肠杆菌)在808nm激光照射下。与CuS相比,CuS-T150优越的抗菌活性主要归因于其更强的吸附氧分子的能力,更容易与大肠杆菌表面结合,和更高的光热转换效率(PTCE)。这项工作提供了对具有空位的纳米材料通过光动力和光热疗法的协同作用来调节抗菌效率的更深入的了解。
    Cu-based nanomaterials have been developed to alleviate the problem of antibiotic resistance due to their superior properties and good biocompatibility. Defects in nanomaterials have a major role in improving photocatalytic performance. Herein, two CuS nanospheres with predominant VCuSCu and VCuSS vacancy (abbreviated as CuS and CuS-T150, respectively) characterized by positron annihilation spectra are synthesized. The combination of experimental and theoretical calculation results demonstrates that CuS-T150 exhibits excellent antibacterial, achieving bactericidal rates of 99.9% against to Escherichia coli (E. coli) under 808 nm laser irradiation. Compared with CuS, the superior antimicrobial activity of CuS-T150 is mainly attributed to its stronger ability to adsorb oxygen molecules, more easily bind with surface of E. coli, and higher photothermal conversion efficiency (PTCE). This work provides a deeper understanding of nanomaterials with vacancy modulated the antibacterial efficiency by synergistic effect of photodynamic and photothermal therapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号