VHEE

VHEE
  • DOI:
    文章类型: Journal Article
    基于紧凑型分布式电荷加速器结构的激光康普顿X射线系统的设计和优化可以实现疾病的微米级成像以及能够产生与FLASH相关的剂量率的极高能电子(VHEE)束的伴随产生。激光康普顿X射线散射的物理学确保散射的X射线精确地遵循入射电子的轨迹,从而提供了一条图像引导的路线,VHEEFLASH放疗。能够产生激光康普顿X射线和VHEE的紧凑架构的关键是使用X波段RF加速器结构,该结构已被证明可以在超过100MeV/m的加速度梯度下运行。这些结构在分布式电荷模式中的操作,其中驱动RF脉冲的每个射频(RF)周期填充有低电荷,高亮度电子束是通过用一系列与底层加速器系统的频率同步的UV激光脉冲照射高亮度光源来实现的。UV脉冲序列是通过专利脉冲合成方法创建的,该方法利用加速器的RF时钟对窄带连续波(CW)种子激光器进行相位和幅度调制。以这种方式,可以从加速器产生高达10{\\mu}A的平均束电流。来自紧凑型加速器的如此高的电流使得能够通过激光康普顿散射产生足够的X射线用于临床成像,并且能够从具有“临床”足迹的机器中实现。同时,每个RF脉冲产生1000个或更多的单个微束使得能够在<100ns的宏束中产生>10nC的电荷。设计,建筑,并在Irvine测试了100-MeV级原型系统,还介绍了CA。
    The design and optimization of laser-Compton x-ray systems based on compact distributed charge accelerator structures can enable micron-scale imaging of disease and the concomitant production of beams of Very High Energy Electrons (VHEEs) capable of producing FLASH-relevant dose rates. The physics of laser-Compton x-ray scattering ensures that the scattered x-rays follow exactly the trajectory of the incident electrons, thus providing a route to image-guided, VHEE FLASH radiotherapy. The keys to a compact architecture capable of producing both laser-Compton x-rays and VHEEs are the use of X-band RF accelerator structures which have been demonstrated to operate with over 100 MeV/m acceleration gradients. The operation of these structures in a distributed charge mode in which each radiofrequency (RF) cycle of the drive RF pulse is filled with a low-charge, high-brightness electron bunch is enabled by the illumination of a high-brightness photogun with a train of UV laser pulses synchronized to the frequency of the underlying accelerator system. The UV pulse trains are created by a patented pulse synthesis approach which utilizes the RF clock of the accelerator to phase and amplitude modulate a narrow band continuous wave (CW) seed laser. In this way it is possible to produce up to 10 μA of average beam current from the accelerator. Such high current from a compact accelerator enables production of sufficient x-rays via laser-Compton scattering for clinical imaging and does so from a machine of \"clinical\" footprint. At the same time, the production of 1000 or greater individual micro-bunches per RF pulse enables > 10 nC of charge to be produced in a macrobunch of < 100 ns. The design, construction, and test of the 100-MeV class prototype system in Irvine, CA is also presented.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Systematic Review
    与传统放射治疗相比,FLASH放射治疗的辐射束速度是传统放射治疗的一千倍,减少健康组织中的辐射损伤,具有等效的肿瘤反应。虽然没有完全理解,这种放射生物学现象已经在几种动物模型中得到了证明,目前在当代放射治疗中使用的各种粒子的光谱,尤其是电子。然而,所有研究团队都使用工业直线加速器或LINAC进行了FLASH临床前研究,这些研究通常用于常规放射治疗,并为超高剂量率(UHDR)的递送进行了改良.不幸的是,UHDR光束的传递和测量已被证明是不完全可靠的与这样的设备。人们对光束监测和剂量测定系统的准确性感到担忧。此外,该LINAC完全缺乏能够在体内实验的情况下评估内部剂量分布的集成和专用治疗计划系统(TPS)。最后,这些设备不能修改与闪光效应相关的光束的剂量-时间参数,例如平均剂量率;每脉冲剂量;和瞬时剂量率。这方面也排除了与生物现象的定量关系的探索。对这些参数的依赖性需要进一步研究。新一代电子LINAC成功克服了其中一些技术挑战,这是一个有希望的进步。在这次审查中,我们的目标是提供现有的关于使用电子FLASH放射治疗的体内实验的文献的全面总结,并探索与该技术相关的有希望的临床观点。
    FLASH-radiotherapy delivers a radiation beam a thousand times faster compared to conventional radiotherapy, reducing radiation damage in healthy tissues with an equivalent tumor response. Although not completely understood, this radiobiological phenomenon has been proved in several animal models with a spectrum of all kinds of particles currently used in contemporary radiotherapy, especially electrons. However, all the research teams have performed FLASH preclinical studies using industrial linear accelerator or LINAC commonly employed in conventional radiotherapy and modified for the delivery of ultra-high-dose-rate (UHDRs). Unfortunately, the delivering and measuring of UHDR beams have been proved not to be completely reliable with such devices. Concerns arise regarding the accuracy of beam monitoring and dosimetry systems. Additionally, this LINAC totally lacks an integrated and dedicated Treatment Planning System (TPS) able to evaluate the internal dose distribution in the case of in vivo experiments. Finally, these devices cannot modify dose-time parameters of the beam relevant to the flash effect, such as average dose rate; dose per pulse; and instantaneous dose rate. This aspect also precludes the exploration of the quantitative relationship with biological phenomena. The dependence on these parameters need to be further investigated. A promising advancement is represented by a new generation of electron LINAC that has successfully overcome some of these technological challenges. In this review, we aim to provide a comprehensive summary of the existing literature on in vivo experiments using electron FLASH radiotherapy and explore the promising clinical perspectives associated with this technology.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    Objective.50-250MeV范围内的极高能电子(VHEE)对于使用FLASH放射疗法(RT)治疗深层肿瘤很有意义。这种方法提供了有利的剂量分布和有效递送超高剂量率(UHDR)的能力。为了使基于VHEE的FLASH治疗在临床上可行,探索了一种新颖的光束监测技术,作为传输电离监测室的替代方案,在UHDR具有非线性响应。本研究介绍了光纤闪光监视器(FOFM),它由基于二氧化硅光纤的Cherenkov传感器阵列组成,该传感器具有用于信号读出的光电探测器。方法。在CERN的CLEAR设施使用200MeV和160MeV电子进行了实验,以评估FOFM对FLASH放射治疗所需的UHDR(用放射变色胶片表征)的响应线性。将在FOFM上进行的光束轮廓测量值与使用放射变色膜和闪烁钇铝石榴石(YAG)屏幕的光束轮廓测量值进行了比较。主要结果。对一系列光电探测器进行了评估,互补金属氧化物半导体(CMOS)相机是该显示器的最合适选择。FOFM表现出从0.9Gy/脉冲到57.4Gy/脉冲的优异响应线性(R2=0.999)。此外,它对160MeV至200MeV之间的能量或瞬时剂量率没有任何明显的依赖性。高斯拟合应用于垂直光束轮廓测量表明,FOFM可以准确地提供逐脉冲光束尺寸测量,在辐射变色胶片和YAG屏幕测量的误差范围内达成一致,分别。意义。FOFM被证明是用于UHDRVHEE光束的实时光束轮廓和剂量监测的有前途的解决方案,在UHDR制度中具有线性响应。此外,它可以执行脉冲的脉冲光束尺寸测量,目前在传输电离监测室中缺乏的功能,这对于实施FLASH放射治疗及其相关的质量保证要求可能变得至关重要。
    Objective. Very high energy electrons (VHEE) in the range of 50-250 MeV are of interest for treating deep-seated tumours with FLASH radiotherapy (RT). This approach offers favourable dose distributions and the ability to deliver ultra-high dose rates (UHDR) efficiently. To make VHEE-based FLASH treatment clinically viable, a novel beam monitoring technology is explored as an alternative to transmission ionisation monitor chambers, which have non-linear responses at UHDR. This study introduces the fibre optic flash monitor (FOFM), which consists of an array of silica optical fibre-based Cherenkov sensors with a photodetector for signal readout.Approach. Experiments were conducted at the CLEAR facility at CERN using 200 MeV and 160 MeV electrons to assess the FOFM\'s response linearity to UHDR (characterised with radiochromic films) required for FLASH radiotherapy. Beam profile measurements made on the FOFM were compared to those using radiochromic film and scintillating yttrium aluminium garnet (YAG) screens.Main results. A range of photodetectors were evaluated, with a complementary-metal-oxide-semiconductor (CMOS) camera being the most suitable choice for this monitor. The FOFM demonstrated excellent response linearity from 0.9 Gy/pulse to 57.4 Gy/pulse (R2= 0.999). Furthermore, it did not exhibit any significant dependence on the energy between 160 MeV and 200 MeV nor the instantaneous dose rate. Gaussian fits applied to vertical beam profile measurements indicated that the FOFM could accurately provide pulse-by-pulse beam size measurements, agreeing within the error range of radiochromic film and YAG screen measurements, respectively.Significance. The FOFM proves to be a promising solution for real-time beam profile and dose monitoring for UHDR VHEE beams, with a linear response in the UHDR regime. Additionally it can perform pulse-by-pulse beam size measurements, a feature currently lacking in transmission ionisation monitor chambers, which may become crucial for implementing FLASH radiotherapy and its associated quality assurance requirements.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:将FLASH-放射疗法(RT)临床转化为深部肿瘤仍然是一项技术挑战。一种解决方案包括使用约200-250MeV的超高剂量率透射质子(TP)束以质子深度剂量分布的平坦入口照射肿瘤。这项工作评估了基于高能电子(VHEE)的RT(50-250MeV)的剂量测定性能,作为基于TP的RT的潜在替代方案,用于FLASH效应的临床转移。
    方法:利用蒙特卡罗模拟在水中比较了VHEE和TP光束的基本物理特性。使用支持VHEE的研究治疗计划系统来评估使用不同能量的VHEE光束可实现的计划质量,与胶质母细胞瘤的250MeVTP束相比,食道,和前列腺癌病例.
    结果:像TP,高于100MeV的VHEE可以治疗具有大致平坦(±20%内)深度剂量分布的靶标。因此,对于两种模式,可实现的剂量学目标一致性和相邻的危险器官(OAR)的节省都是通过其横向波束弯曲来驱动的。400[500]MeV的10cm直径电子束与200[250]MeVTP束的半影匹配,并且对于较低的电子能量,半影增加。对于所调查的患者病例,能量为150MeV及以上的VHEE计划实现了与250MeVTP计划相当的剂量测定计划质量。对于胶质母细胞瘤和食道病例,虽然一致性下降,与TP相比,即使100MeVVHEE计划也提供了相似的目标覆盖率和OAR节省。
    结论:使用足够高的束流能量的基于VHEE的FLASH-RT可以提供比基于TP的FLASH-RT更轻的粒子替代方案,具有可比的剂量测定计划质量。
    Clinical translation of FLASH-radiotherapy (RT) to deep-seated tumours is still a technological challenge. One proposed solution consists of using ultra-high dose rate transmission proton (TP) beams of about 200-250 MeV to irradiate the tumour with the flat entrance of the proton depth-dose profile. This work evaluates the dosimetric performance of very high-energy electron (VHEE)-based RT (50-250 MeV) as a potential alternative to TP-based RT for the clinical transfer of the FLASH effect.
    Basic physics characteristics of VHEE and TP beams were compared utilizing Monte Carlo simulations in water. A VHEE-enabled research treatment planning system was used to evaluate the plan quality achievable with VHEE beams of different energies, compared to 250 MeV TP beams for a glioblastoma, an oesophagus, and a prostate cancer case.
    Like TP, VHEE above 100 MeV can treat targets with roughly flat (within ± 20 %) depth-dose distributions. The achievable dosimetric target conformity and adjacent organs-at-risk (OAR) sparing is consequently driven for both modalities by their lateral beam penumbrae. Electron beams of 400[500] MeV match the penumbra of 200[250] MeV TP beams and penumbra is increased for lower electron energies. For the investigated patient cases, VHEE plans with energies of 150 MeV and above achieved a dosimetric plan quality comparable to that of 250 MeV TP plans. For the glioblastoma and the oesophagus case, although having a decreased conformity, even 100 MeV VHEE plans provided a similar target coverage and OAR sparing compared to TP.
    VHEE-based FLASH-RT using sufficiently high beam energies may provide a lighter-particle alternative to TP-based FLASH-RT with comparable dosimetric plan quality.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    背景:动能高达几百MeV的电子,也称为极高能电子(VHEE),目前被认为是未来放射治疗(RT),特别是超高剂量率(UHDR)治疗的有前途的技术。然而,临床应用的可行性仍在争论中,VHEE治疗仍然是一个活跃的研究领域,其最佳适形技术也有待确定.
    目的:在这项工作中,我们将基于解析高斯多库仑散射理论和蒙特卡罗(MC)模拟应用两种现有的形式主义,以研究和比较两种光束传输系统(有或没有准直器或主动扫描的被动散射)产生的电子和致辐射光子剂量分布。
    方法:因此,我们测试了解析和MC模型在VHEE梁中的应用,并评估了它们在6-200MeV能量范围内的性能和参数化。优化的电子束注量,韧致辐射,在实际范围内的中心轴和离轴X射线剂量的估计以及中子对总剂量的贡献,随着光子剂量模型的扩展参数化,以及双散射(DS)和笔形光束扫描(PBS)技术之间的比较。用TOPAS/Geant4工具包进行MC模拟以验证通过分析计算预测的剂量分布。
    结果:报告了临床能量范围(6至20MeV)以及较高能量(VHEE范围20至200MeV)和两种治疗场大小(5×5和10×10cm2)的结果。显示与MC模拟的合理一致性,平均差异低于2.1%。还说明了介质中或散射系统沿中心轴产生的光子的相对贡献(高达总剂量的50%)。以及它们与电子能量的相对变化。
    结论:本研究中参数化的快速分析模型允许估计DS系统在实际范围后产生的光子量,精度低于3%,为VHEE系统的最终设计提供重要信息。这项工作的结果可以支持VHEE放射治疗的未来研究。
    BACKGROUND: Electrons with kinetic energy up to a few hundred MeV, also called very high energy electrons (VHEE), are currently considered a promising technique for the future of radiation therapy (RT) and in particular ultra-high dose rate (UHDR) therapy. However, the feasibility of a clinical application is still being debated and VHEE therapy remains an active area of research for which the optimal conformal technique is also yet to be determined.
    OBJECTIVE: In this work, we will apply two existing formalisms based on analytical Gaussian multiple-Coulomb scattering theory and Monte Carlo (MC) simulations to study and compare the electron and bremsstrahlung photon dose distributions arising from two beam delivery systems (passive scattering with or without a collimator or active scanning).
    METHODS: We therefore tested the application of analytical and MC models to VHEE beams and assessed their performance and parameterization in the energy range of 6-200 MeV. The optimized electron beam fluence, the bremsstrahlung, an estimation of central-axis and off-axis x-ray dose at the practical range and neutron contributions to the total dose, along with an extended parameterization for the photon dose model were developed, together with a comparison between double scattering (DS) and pencil beam scanning (PBS) techniques. MC simulations were performed with the TOPAS/Geant4 toolkit to verify the dose distributions predicted by the analytical calculations.
    RESULTS: The results for the clinical energy range (between 6 and 20 MeV) as well as for higher energies (VHEE range between 20 and 200 MeV) and for two treatment field sizes (5 × 5 and 10 × 10 cm2 ) are reported, showing a reasonable agreement with MC simulations with mean differences below 2.1%. The relative contributions of photons generated in the medium or by the scattering system along the central-axis (up to 50% of the total dose) are also illustrated, along with their relative variations with electron energy.
    CONCLUSIONS: The fast analytical models parametrized in this study allow an estimation of the amount of photons produced behind the practical range by a DS system with an accuracy lower than 3%, providing important information for the eventual design of a VHEE system. The results of this work could support future research on VHEE radiotherapy.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    目的:高能电子(VHEE)可以弥补低能电子的处理深度不足,同时在光子和质子之间提供中等剂量优势。结合FLASH和VHEE,对不同能量进行了定量比较,关于计划质量,剂量率分布(在PTV和OAR中),和治疗的总持续时间(开束时间)。
    方法:在2例患者(头部和肺部)中,我们通过蒙特卡罗模拟和基于PTV的优化算法,利用扫描笔形波束创建了治疗计划。Geant4用于模拟VHEE笔形光束,尺寸为0.3-5mm,由半峰全宽(FWHM)定义。在x和y方向(ISOURC=19)上具有高斯分布的单能束用作电子源。使用大规模非线性求解器(IPOPT)来计算最佳点权重。优化后,对治疗计划质量进行了不同能量之间的定量比较,剂量率分布(在PTV和OAR中),和总光束持续时间。
    结果:对于头部(80MeV,100MeV,和120MeV)和肺部病例(100MeV,120MeV,和140MeV),最小束强度需要为2.5×1011电子/s和9.375×1011电子/s,以允许>90%体积的PTV达到高于40Gy/s的平均剂量率(DADR)。在此光束强度下(部分剂量:10Gy),头部外壳的总辐照时间为5258.75ms(80MeV),5149.75ms(100MeV),4976.75ms(120MeV),包括扫描时间872.75ms。对于肺部病例,这个数字是1034.25ms(100MeV),981.55ms(120MeV),和928.15ms(140MeV),包括扫描时间298.75ms。更高能量的计划总是以更高的剂量率(在PTV和OAR两者中)执行,并且由此花费更少的递送时间(射束开启时间)。
    结论:该研究系统地研究了目前已知的VHEE放疗的FLASH参数,并成功地为其FLASH剂量率性能建立了基准参考。
    OBJECTIVE: Very high-energy electron (VHEE) can make up the insufficient treatment depth of the low-energy electron while offering an intermediate dosimetric advantage between photon and proton. Combining FLASH with VHEE, a quantitative comparison between different energies was made, with regard to plan quality, dose rate distribution (both in PTV and OAR), and total duration of treatment (beam-on time).
    METHODS: In two patient cases (head and lung), we created the treatment plans utilizing the scanning pencil beam via the Monte Carlo simulation and a PTV-based optimization algorithm. Geant4 was used to simulate VHEE pencil beams and sizes of 0.3-5 mm defined by the full width at half maximum (FWHM). Monoenergetic beams with Gaussian distribution in x and y directions (ISOURC = 19) were used as the source of electrons. A large-scale non-linear solver (IPOPT) was used to calculate the optimal spot weights. After optimization, a quantitative comparison between different energies was made regarding treatment plan quality, dose rate distribution (both in PTV and OAR), and total beam duration.
    RESULTS: For head (80 MeV, 100 MeV, and 120 MeV) and lung cases (100 MeV, 120 MeV, and 140 MeV), the minimum beam intensity needs to be ∼2.5 × 1011 electrons/s and ∼9.375 × 1011 electrons/s to allow > 90 % volume of PTV reaching the average dose rate (DADR) higher than 40 Gy/s. At this beam intensity (fraction dose: 10 Gy), the overall irradiation time for the head case is 5258.75 ms (80 MeV), 5149.75 ms (100 MeV), and 4976.75 ms (120 MeV), including scanning time 872.75 ms. For lung cases, this number is 1034.25 ms (100 MeV), 981.55 ms (120 MeV), and 928.15 ms (140 MeV), including scanning time 298.75 ms. The plan of higher energy always performs with a higher dose rate (both in PTV and OAR) and thereby costs less delivery time (beam-on time).
    CONCLUSIONS: The study systematically investigated the currently known FLASH parameters for VHEE radiotherapy and successfully established a benchmark reference for its FLASH dose rate performance.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Objective.蒙特卡罗模拟软件是放射治疗中一个有价值的工具,特别地,以在用于治疗计划优化的剂量评估中实现所需的准确度。该领域中的当前挑战是时间减少,以打开通往计算时间是问题的许多临床应用的道路。在本手稿中,我们提出了一种创新的GPU加速蒙特卡洛软件,用于基于电子和光子的放射治疗中的剂量评估。作为FRED(快速剂量评估器)软件的更新而开发。方法。代码通过3D体素网格传输粒子,同时沿着它们的轨迹对它们的能量沉积进行评分。文献中可用的1MeV-1GeV之间的能量区域中的电磁相互作用模型已经实现,可以在GPU上有效运行,允许结合快速跟踪,同时保持高精度的剂量评估。FRED软件已针对最先进的完整MC(FLUKA,GEANT4)在两种不同的放射治疗应用领域:术中放射治疗和极高电子能放射治疗应用。结果。水中的单个铅笔束剂量深度剖面以及在非均匀体模上计算的剂量图与2%水平的全MC一致,观察从200到5000的处理时间的增益。意义。这样的性能允许在几分钟内用电子束计算计划,精度为%。证明FRED潜力可用于光子或电子放射治疗应用中的快速计划重新计算。
    Objective. The Monte Carlo simulation software is a valuable tool in radiation therapy, in particular to achieve the needed accuracy in the dose evaluation for the treatment plans optimisation. The current challenge in this field is the time reduction to open the way to many clinical applications for which the computational time is an issue. In this manuscript we present an innovative GPU-accelerated Monte Carlo software for dose valuation in electron and photon based radiotherapy, developed as an update of the FRED (Fast paRticle thErapy Dose evaluator) software.Approach. The code transports particles through a 3D voxel grid, while scoring their energy deposition along their trajectory. The models of electromagnetic interactions in the energy region between 1 MeV-1 GeV available in literature have been implemented to efficiently run on GPUs, allowing to combine a fast tracking while keeping high accuracy in dose assessment. The FRED software has been bench-marked against state-of-art full MC (FLUKA, GEANT4) in the realm of two different radiotherapy applications: Intra-Operative Radio Therapy and Very High Electron Energy radiotherapy applications.Results. The single pencil beam dose-depth profiles in water as well as the dose map computed on non-homogeneous phantom agree with full-MCs at 2% level, observing a gain in processing time from 200 to 5000.Significance. Such performance allows for computing a plan with electron beams in few minutes with an accuracy of ∼%, demonstrating the FRED potential to be adopted for fast plan re-calculation in photon or electron radiotherapy applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    FLASH效应表示在超高剂量率下保留正常组织(UHDR,>40Gy/s)与常规剂量率(~0.1Gy/s)照射相比,同时保持肿瘤控制,并有可能提高放射治疗(RT)的治疗比例。UHDR高能电子(HEE,4-20MeV)束目前是研究FLASHRT治疗浅表肿瘤的临床潜力的支柱。在未来的极高能电子(VHEE,50-250MeV)UHDR光束可用于治疗深层肿瘤。UHDRHEE治疗计划的初始阶段侧重于对转换后的专用UHDR电子RT设备进行准确的剂量学建模,以用于FLASHRT的临床转移。与计算机中的临床光子RT技术相比,VHEE治疗计划表现出了有希望的剂量学性能,并用于评估和优化新型VHEERT设备的设计。已经提出了多种度量和模型来定量描述治疗计划中的FLASH效应,但是需要改进的实验表征和对FLASH效应的理解,以便对治疗计划中的效应进行准确和验证的建模。电子FLASHRT治疗计划的重要性将随着该领域的发展而增加,以治疗更复杂的临床适应症和目标部位。在这次审查中,考虑梁模型,介绍了HEE和VHEE中的TPS发展,特点,以及未来的FLASH应用。
    The FLASH effect designates normal tissue sparing at ultra-high dose rate (UHDR, >40 Gy/s) compared to conventional dose rate (∼0.1 Gy/s) irradiation while maintaining tumour control and has the potential to improve the therapeutic ratio of radiotherapy (RT). UHDR high-energy electron (HEE, 4-20 MeV) beams are currently a mainstay for investigating the clinical potential of FLASH RT for superficial tumours. In the future very-high energy electron (VHEE, 50-250 MeV) UHDR beams may be used to treat deep-seated tumours. UHDR HEE treatment planning focused at its initial stage on accurate dosimetric modelling of converted and dedicated UHDR electron RT devices for the clinical transfer of FLASH RT. VHEE treatment planning demonstrated promising dosimetric performance compared to clinical photon RT techniques in silico and was used to evaluate and optimise the design of novel VHEE RT devices. Multiple metrics and models have been proposed for a quantitative description of the FLASH effect in treatment planning, but an improved experimental characterization and understanding of the FLASH effect is needed to allow for an accurate and validated modelling of the effect in treatment planning. The importance of treatment planning for electron FLASH RT will augment as the field moves forward to treat more complex clinical indications and target sites. In this review, TPS developments in HEE and VHEE are presented considering beam models, characteristics, and future FLASH applications.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 暂无摘要。
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    参照我们实验工作中使用的标准12MeV电子校准束,在新型200MeV高能电子(VHEE)束中对Roos二级标准平面平行电离室进行了详细表征。已确定了两个光束的停止功率比和扰动因子,并用于使用Geant4通用MC代码计算光束质量校正因子。已针对Geant4中可用的各种带电粒子传输参数计算了这些因素,发现这些参数通过了Fano腔测试。发现12MeV电子校准束质量的停止功率比与当前剂量测定协议所引用的不确定性一致。根据参数配置,发现校准光束的摄动因子变化高达4%,相比之下,VHEE光束仅为0.8%。发现光束质量校正因子描述的剂量比最初计算的剂量低约10%,如果不考虑光束质量校正。此外,这里提供的结果在很大程度上解决了非物理腔室测量,例如收集效率大于100%,并有助于准确确定二级标准电离室中的吸收剂量和离子重组。
    Detailed characterisation of the Roos secondary standard plane-parallel ionisation chamber has been conducted in a novel 200 MeV Very High Energy Electron (VHEE) beam with reference to the standard 12 MeV electron calibration beam used in our experimental work. Stopping-power-ratios and perturbation factors have been determined for both beams and used to calculated the beam quality correction factor using the Geant4 general purpose MC code. These factors have been calculated for a variety of charged particle transport parameters available in Geant4 which were found to pass the Fano cavity test. Stopping-power-ratios for the 12 MeV electron calibration beam quality were found to agree within uncertainties to that quoted by current dosimetry protocols. Perturbation factors were found to vary by up-to 4% for the calibration beam depending on the parameter configuration, compared with only 0.8% for the VHEE beam. Beam quality correction factors were found to describe an approximately 10% lower dose than would be originally calculated if a beam quality correction were not accounted for. Moreover, results presented here largely resolve unphysical chamber measurements, such as collection efficiencies greater than 100%, and assist in the accurate determination of absorbed dose and ion recombination in secondary standard ionisation chambers.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

公众号