V2CTx MXene

  • 文章类型: Journal Article
    通过在300°C的高温煅烧,成功合成了具有层状棒状键合结构的ZnMn2O4/V2CTx复合材料,旨在提高尖晶石型ZnMn2O4锂离子电池负极材料的锂存储性能。此外,尽管在300°C下获得的复合材料的电极的标称比容量为100mAhg-1,但在经历100次循环后,它表现出令人印象深刻的比放电容量为163mAhg-1。这表示与在纯ZnMn2O4电极(99.5mAh/g-1)中观察到的相比大约64%的增加。复合材料的卓越性能可以归功于ZnMn2O4和V2CTx之间的协同作用,导致其锂离子存储容量的大幅提升。因此,这项研究为开发具有成本效益的产品提供了宝贵的见解,安全,和容易制备的阳极材料。
    The ZnMn2O4/V2CTx composites with a lamellar rod-like bond structure were successfully synthesized through high-temperature calcination at 300 °C, aiming to enhance the Li storage properties of spinel-type ZnMn2O4 anode materials for lithium-ion batteries. Moreover, even though the electrode of the composites obtained at 300 °C had a nominal specific capacity of 100 mAh g-1, it exhibited an impressive specific discharge capacity of 163 mAh g-1 after undergoing 100 cycles. This represents an approximate increase of 64% compared to that observed in the pure ZnMn2O4 electrode (99.5 mAh g-1). The remarkable performance of the composite can be credited to the collaborative impact between ZnMn2O4 and V2CTx, leading to a substantial improvement in its lithium ion storage capacity. Therefore, this study offers valuable insights into developing cost-effective, safe, and easily prepared anode materials.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    快速可靠的免疫传感无疑是有效管理和抗击大流行的优先事项之一,正如社会所经历的SARS-CoV-2疫情;简单且具有成本效益的传感策略是这些努力的最前沿。在这方面,2D层状MXenes由于其诱人的物理化学性质而具有电化学生物传感的巨大潜力。在这里,我们提出了一种基于V2CTxMXene的传感层,作为无标记免疫传感器的组成部分,用于灵敏和选择性地检测SARS-CoV-2刺突蛋白。使用Nafion作为MXene和戊二醛的固定剂,在支撑丝网印刷碳电极上制造传感器,后者能够有效结合蛋白A,以进一步固定抗SARS-CoV-2抗体。对传感器架构进行了彻底的结构分析,并对影响免疫传感器制备和分析性能的几个关键参数进行了研究和优化。免疫传感器与阻抗分析法结合显示出优异的电分析性能,并显示出仅45fMSARS-CoV-2刺突蛋白的低检测极限。通过测量加标人工鼻咽液样品中的刺突蛋白,成功证明了其实用性。
    Rapid and reliable immunosensing is undoubtedly one of the priorities in the efficient management and combat against a pandemic, as society has experienced with the SARS-CoV-2 outbreak; simple and cost-effective sensing strategies are at the forefront of these efforts. In this regard, 2D-layered MXenes hold great potential for electrochemical biosensing due to their attractive physicochemical properties. Herein, we present a V2CTx MXene-based sensing layer as an integral part of a label-free immunosensor for sensitive and selective detection of the SARS-CoV-2 spike protein. The sensor was fabricated on a supporting screen-printed carbon electrode using Nafion as an immobilizing agent for MXene and glutaraldehyde, the latter enabling effective binding of protein A for further site-oriented immobilization of anti-SARS-CoV-2 antibodies. A thorough structural analysis of the sensor architecture was carried out, and several key parameters affecting the fabrication and analytical performance of the immunosensor were investigated and optimized. The immunosensor showed excellent electroanalytical performance in combination with an impedimetric approach and exhibited a low detection limit of only 45 fM SARS-CoV-2 spike protein. Its practical applicability was successfully demonstrated by measuring the spike protein in a spiked artificial nasopharyngeal fluid sample.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    在寻找独特和未探索的2D材料时,作者首次尝试研究通过原子层沉积(ALD)将分层的V-MXene与贵金属钌(Ru)耦合用于人机界面上各种接触和非接触模式的实时温度传感应用。新型分层V-MXene(DM-V2CTx)工程钌-ALD(Ru-ALD)温度传感器具有1.11%°C-1的竞争性传感性能,仅V-MXene为0.42%°C-1。与高度有序的少层V-MXene和选择性相关的传感和可逆性性能增加了近三倍,通过ALD控制良好的Ru原子掺杂,成功形成Ru@DM-V2CTX异质结构。先进的异质结构形成,机制,Ru的作用已通过超高分辨率透射/扫描透射电子显微镜以及下一代球面像差校正技术进行了全面研究,准确的元素映射量化,还通过紫外光电子能谱。知识,这部作品是第一个使用小说,最佳处理的V-MXene传统使用的Ti-MXene及其表面内部结构工程通过Ru-ALD工艺的温度传感装置的功能和操作演示。目前的工作可能会激发多功能的发展,未来,下一代,安全,通过工业上可扩展的ALD技术的个人保健电子设备。
    In searching for unique and unexplored 2D materials, the authors try to investigate for the very first time the use of delaminated V-MXene coupled with precious metal ruthenium (Ru) through atomic layer deposition (ALD) for various contact and noncontact mode of real-time temperature sensing applications at the human-machine interface. The novel delaminated V-MXene (DM-V2 CTx ) engineered ruthenium-ALD (Ru-ALD) temperature sensor demonstrates a competitive sensing performance of 1.11% °C-1 as of only V-MXene of 0.42% °C-1 . A nearly threefold increase in sensing and reversibility performance linked to the highly ordered few-layered V-MXene and selective, well-controlled Ru atomic doping by ALD for the successful formation of Ru@DM-V2 CTX heterostructure. The advanced heterostructure formation, the mechanism, and the role of Ru have been comprehensively investigated by ultra-high-resolution transmission/scanning transmission electron microscopies coupled with next-generation spherical aberration correction technology and fast, accurate elemental mapping quantifications, also by ultraviolet photoelectron spectroscopy. To the knowledge, this work is the first to use the novel, optimally processed V-MXene over conventionally used Ti-MXene and its surface-internal structure engineering by Ru-ALD process-based temperature-sensing devices function and operational demonstrations. The current work could potentially motivate the development of multifunctional, future, next-generation, safe, personal healthcare electronic devices by the industrially scalable ALD technique.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Pubmed)

  • 文章类型: Journal Article
    作为一种新兴的二维材料,MXenes在能量储存和转换领域表现出巨大的潜力,由于其优越的导电性,有效的表面化学,手风琴状分层结构,和许多有序的纳米通道。然而,层间积累和结构元素的化学呆滞阻碍了MXenes优势的展示。通过在V2CTx上的金属预插层和原位电化学氧化策略,MXene扩大了其面间距,并激发了最外层的钒原子,以实现锌离子在水性锌离子电池(ZIB)中的频繁转移和高存储容量。受益于这些策略的协同效应,所得的VOx/Mn-V2C电极在0.1Ag-1时表现出530mAhg-1的高容量,以及415Whkg-1的显着能量密度和5500Wkg-1的功率密度。令人印象深刻的是,在5Ag-1的2000次循环中,该电极提供了优异的循环稳定性,库仑效率接近100%。令人满意的电化学性能与报道的钒基和MXene基水性ZIB相比。这项工作为安全制备出色的钒基电极提供了一种新方法,并扩展了MXenes在储能领域的应用。
    As an emerging two-dimensional material, MXenes exhibit enormous potentials in the fields of energy storage and conversion, due to their superior conductivity, effective surface chemistry, accordion-like layered structure, and numerous ordered nanochannels. However, interlayer accumulation and chemical sluggishness of structural elements have hampered the demonstration of the superiorities of MXenes. By metal preintercalation and in situ electrochemical oxidization strategies on V2 CTx , MXene has enlarged its interplanar spacing and excited the outermost vanadium atoms to achieve frequent transfer and high storage capacity of Zn ions in aqueous zinc-ion batteries (ZIBs). Benefiting from the synergistic effects of these strategies, the resulting VOx /Mn-V2 C electrode exhibits the high capacity of 530 mA h g-1 at 0.1 A g-1 , together with a remarkable energy density of 415 W h kg-1 and a power density of 5500 W kg-1 . Impressively, the electrode delivers excellent cycling stability with Coulombic efficiency of nearly 100% in 2000 cycles at 5 A g-1 . The satisfactory electrochemical performances bear comparison with those in reported vanadium-based and MXene-based aqueous ZIBs. This work provides a new methodology for safe preparation of outstanding vanadium-based electrodes and extends the applications of MXenes in the energy storage field.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    开发具有高效析氧反应(OER)和析氢反应(HER)的双功能电催化剂仍然是现阶段的关键挑战。在这里,通过水热法将FeNiLDH沉积在V2CTx/NF基底上,制备了FeNiLDH/V2CTx/泡沫镍(NF)自支撑双功能电极。V2CTx/NF与FeNiLDH之间的强界面相互作用有效地阻止了FeNiLDH的聚集,从而暴露更多的催化活性位点,这改善了纳米杂化物的导电性和结构稳定性。结果表明,制备的FeNiLDH/V2CTx/NF在1MKOH中对OER和HER分别需要222mV和151mV的过电位,以提供10mAcm-2。此外,FeNiLDH/V2CTx/NF电催化剂用于整体水分解,在1.74V下实现10mAcm-2的电流密度。这项工作为通过简单的合成策略提高电催化剂的电催化性能提供了思路,结构调整,使用导电基板和形成分层结构。
    The development of bifunctional electrocatalysts with efficient oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is still a key challenge at the current stage. Herein, FeNi LDH/V2CTx/nickel foam (NF) self-supported bifunctional electrode was prepared via deposition of FeNi LDH on V2CTx/NF substrate by hydrothermal method. Strong interfacial interaction between V2CTx/NF and FeNi LDH effectively prevented the aggregation of FeNi LDH, thus exposing more catalytic active sites, which improved electrical conductivity of the nanohybrids and structural stability. The results indicated that the prepared FeNi LDH/V2CTx/NF required 222 mV and 151 mV overpotential for OER and HER in 1 M KOH to provide 10 mA cm-2, respectively. Besides, the FeNi LDH/V2CTx/NF electrocatalysts were applied to overall water splitting, which achieved a current density of 10 mA cm-2 at 1.74 V. This work provides ideas for improving the electrocatalytic performance of electrocatalysts through simple synthesis strategies, structural adjustment, use of conductive substrates and formation of hierarchical structures.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    具有很高的理论能力,低成本,丰富的资源,金属钠已成为钠离子电池的理想阳极材料。然而,钠金属阳极的真正可行性仍然受到不受控制的钠枝晶问题的阻碍。在这里,通过直接墨水书写3D打印技术制造人造三维(3D)分层多孔亲钠V2CTx/rGO-CNT微网格气凝胶,并进一步用作Na金属的基质,以提供Na@V2CTx/rGO-CNT钠金属阳极。骑自行车时,V2CTx/rGO-CNT电极可以产生超过3000小时(2mAcm-2,10mAhcm-2)的优异循环寿命,平均库仑效率为99.54%。更吸引人的是,它甚至可以在5mAcm-2下保持900小时的稳定运行,具有50mAhcm-2的超高面积容量。原位和非原位表征和密度泛函理论模拟分析证明,具有丰富的亲钠官能团的V2CTx可以有效地指导金属钠成核和均匀沉积,从而实现无枝晶的形态。此外,将Na@V2CTx/rGO-CNT阳极与Na3V2(PO4)3@C-rGO阴极配对的全电池可以在100mAg-1下进行400次循环后提供86.27mAhg-1的高可逆容量。这项工作不仅阐明了在嗜钠V2CTx/rGO-CNT微网格气凝胶电极上优异的Na沉积化学,而且还提供了一种通过3D打印方法制造高级Na金属阳极的方法。
    Featuring a high theoretical capacity, low cost, and abundant resources, sodium metal has emerged as an ideal anode material for sodium ion batteries. However, the real feasibility of sodium metal anodes is still hampered by the uncontrolled sodium dendrite problems. Herein, an artificial three-dimensional (3D) hierarchical porous sodiophilic V2CTx/rGO-CNT microgrid aerogel is fabricated by a direct-ink writing 3D printing technology and further adopted as the matrix of Na metal to deliver a Na@V2CTx/rGO-CNT sodium metal anode. Upon cycling, the V2CTx/rGO-CNT electrode can yield a superior cycling life of more than 3000 h (2 mA cm-2, 10 mAh cm-2) with an average Coulombic efficiency of 99.54%. More attractively, it can even sustain a stable operation over 900 h at 5 mA cm-2 with an ultrahigh areal capacity of 50 mAh cm-2. In situ and ex situ characterizations and density functional theory simulation analyses prove that V2CTx with abundant sodiophilic functional groups can effectively guide the sodium metal nucleation and uniform deposition, thus enabling a dendrite-free morphology. Moreover, a full cell pairing a Na@V2CTx/rGO-CNT anode with a Na3V2(PO4)3@C-rGO cathode can deliver a high reversible capacity of 86.27 mAh g-1 after 400 cycles at 100 mA g-1. This work not only clarifies the superior Na deposition chemistry on the sodiophilic V2CTx/rGO-CNT microgrid aerogel electrode but also offers an approach for fabricating advanced Na metal anodes via a 3D printing method.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    MXenes由于其层状结构而成为水性锌离子电池(AZIBs)的有前途的阴极材料,金属导电性,和亲水性。然而,它们具有低容量,除非它们经受电化学诱导的第二相形成,这很乏味,耗时,无法控制。在这里,我们提出了一种简单的一步表面硒化策略,用于实现先进的基于MXene的纳米杂化物。通过硒化过程,MXenes的表面金属原子转化为过渡金属硒化物(TMS),表现出高容量和优异的结构稳定性,而MXenes的内层是故意保留的。此策略适用于各种MXenes,如成功构建VSe2@V2CTx所示,TiSe2@Ti3C2Tx,和NbSe2@Nb2CTx。通常,VSe2@V2CTx提供高速率能力(132.7mAhg-1,2.0Ag-1),长期可循环性(在2.0Ag-1下600次循环后,容量保持率为93.1%),和高电容贡献(2.0mVs-1时为85.7%)。详细的实验和模拟结果表明,优异的Zn离子存储归因于V2CTx和VSe2的接合集成,这不仅显着提高了Zn离子扩散系数从4.3×10-15到3.7×10-13cm2s-1,而且还为长期循环提供了足够的结构稳定性。这项研究为开发用于高级水性金属离子电池的高性能MXene基材料提供了一种简便的方法。
    MXenes are promising cathode materials for aqueous zinc-ion batteries (AZIBs) owing to their layered structure, metallic conductivity, and hydrophilicity. However, they suffer from low capacities unless they are subjected to electrochemically induced second phase formation, which is tedious, time-consuming, and uncontrollable. Here we propose a facile one-step surface selenization strategy for realizing advanced MXene-based nanohybrids. Through the selenization process, the surface metal atoms of MXenes are converted to transition metal selenides (TMSes) exhibiting high capacity and excellent structural stability, whereas the inner layers of MXenes are purposely retained. This strategy is applicable to various MXenes, as demonstrated by the successful construction of VSe2@V2CTx, TiSe2@Ti3C2Tx, and NbSe2@Nb2CTx. Typically, VSe2@V2CTx delivers high-rate capability (132.7 mA h g-1 at 2.0 A g-1), long-term cyclability (93.1% capacity retention after 600 cycles at 2.0 A g-1), and high capacitive contribution (85.7% at 2.0 mV s-1). Detailed experimental and simulation results reveal that the superior Zn-ion storage is attributed to the engaging integration of V2CTx and VSe2, which not only significantly improves the Zn-ion diffusion coefficient from 4.3 × 10-15 to 3.7 × 10-13 cm2 s-1 but also provides sufficient structural stability for long-term cycling. This study offers a facile approach for the development of high-performance MXene-based materials for advanced aqueous metal-ion batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Two-dimensional (2D) MXene materials show great potential in energy storage devices. However, the self-restacking of MXene nanosheets and the sluggish lithium-ion (Li+) kinetics greatly hinder their rate capability and cycling stability. Herein, we interlink 2D V2CTx MXene nanosheets with rGO to construct a 3D porous V2CTx-rGO composite. X-ray spectroscopy study reveals the close interfacial contact between V2CTx and rGO via electron transfer from V to C atoms. Benefiting from the close combination and optimized ion transport channel, V2CTx-rGO offers a high-rate Li+ storage performance and excellent cycling stability over 2000 cycles with negligible capacity attenuation. Moreover, it exhibits a dominant mechanism of intercalation pseudocapacitance and efficient Li+ transport proved by density functional theory calculation. This rationally designed 3D V2CTx-rGO has implications for the study of the MXene composite\'s structure and energy storage devices with high rate and stability.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

    求助全文

  • 文章类型: Journal Article
    Mn-based aqueous zinc-ion batteries (ZIBs) are promising candidate for large-scale rechargeable energy storage because of easy fabrication, low cost, and high safety. Nevertheless, the commercial application of Mn-based cathode is hindered by the challenging issues of low rate capability and poor cyclability. Herein, a manganese-vanadium hybrid, K-V2C@MnO2 cathode, featured with MnO2 nanosheets uniformly formed on a V2CTX MXene surface, is elaborately designed and synthesized by metal-cation intercalation and following in situ growth strategy. Benefiting from the hybrid structure with high conductivity, abundant active sites, and the synergistic reaction of Mn2+ electrodeposition and inhibited structural damage of MnO2, K-V2C@MnO2 shows excellent electrochemical performance for aqueous ZIBs. Specifically, it presents the high specific capacity of 408.1 mAh g-1 at 0.3 A g-1 and maintains the specific capacity of 119.2 mAh g-1 at a high current density of 10 A g-1 in a long-term cycle of up to 10000 cycles. It is superior to almost all reported Mn-based cathodes for ZIBs in the aqueous electrolyte. The superior electrochemical performance suggests that the Mn-based cathode materials designed in this work can be a rational approach to be applied for high-performance ZIBs cathodes.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

  • 文章类型: Journal Article
    与电极的相变相关的非电池行为通常对任何电池都是不利的,因为它总是导致性能下降。这里,我们展示了一种锌混合离子电池(ZHIB),通过采用V2CTXMXene作为阴极,即使在18000次循环内也具有不寻常的容量增强,与所有报道的在数百个周期内开始的容量退化的同行有很大不同。主要机制被确定为MXene分层和循环过程中意外的相变。原始阴极和二次导数同时对容量有贡献,导致异常的容量增强。因此,508mAhg-1的比容量(所有报道的水性锌离子电池最高)和386.2Whkg-1的高能量密度。此外,制造的准固态电池可以在-20°C和弯曲状态下稳定输出,扭曲,刺伤,和切割条件。我们的工作带来了有效的方法,也就是说,利用“不稳定”电极材料,这通常应该避免,以实现电池性能的持续增强。使用原始和辅助材料进行能量存储的想法可以发展为实现电池的非凡循环稳定性的一般方法。
    Nonbattery behavior related phase transition of electrodes is usually not favorable for any batteries because it results in performance degradation at all times. Here, we demonstrate a zinc hybrid-ion battery (ZHIB) with an unusual capacity enhancement even within 18 000 cycles by employing V2CTX MXene as the cathode, enormously differing from all reported counterparts with capacity degradation initiated within hundreds of cycles. The dominated mechanisms are determined to be MXene delamination and an unexpected phase transition during cycling. Both the original cathode and secondary derivative contribute to capacity simultaneously, resulting in the unusual capacity enhancement. Consequently, the specific capacity of 508 mAh g-1 (highest for all reported aqueous zinc-ion batteries) and high energy density of 386.2 Wh kg-1 are realized. Also, the quasi-solid-state batteries fabricated can output stably at -20 °C and in bending, twisting, stabbing, and cutting conditions. Our work brings an effective approach, that is, utilizing \"unstable\" electrode materials, which should usually be avoided, to achieve continuously enhanced performance of a battery. The idea to use both original and secondary materials for energy storage may be developed to be a general method to achieve extraordinary cycling stability of batteries.
    导出

    更多引用

    收藏

    翻译标题摘要

    我要上传

       PDF(Sci-hub)

公众号